Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi đó điểm[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C N(2; 3) D P(−2; 3) Câu Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C −7 D Câu Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z · z = a2 − b2 C z − z = 2a D z + z = 2bi Câu 5.√Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mơ-đun số phức w √ = 6z − 25i B 13 C D 29 A 2(1 + 2i) Câu Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = lnx3 B y′ = − x ln1 C y′ = x ln1 D y′ = 1x Câu Tích tất nghiệm phương trình ln2 x + ln x − = B e13 C −2 D −3 A e12 Câu Có số nguyên x thỏa mãn log3 A 193 B 186 x2 −16 343 < log7 C 92 x2 −16 ? 27 D 184 Câu 10 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3) Câu 11 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 30 C 210 D 225 Câu 12 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B C 11 D x + mx + đạt cực tiểu điểm x = Câu 13 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B Khơng có m C m = −1 D m = Câu 14 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 15 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = −1 + 2t x = + 2t x = − 2t x = + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t B C D A z = − 5t z = −4 − 5t z = − 5t z = + 5t Trang 1/5 Mã đề 001 Câu 16 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 17 Chọn mệnh đề mệnh đề sau: R R e2x +C B x dx =5 x + C A e2x dx = R R (2x + 1)3 C sin xdx = cos x + C D (2x + 1)2 dx = + C Câu 18 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 3mn + n + D log2 2250 = C log2 2250 = n n z − z =2? Câu 19 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một đường tròn C Một Elip D Một đường thẳng Câu 20 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 15 B S = C S = D S = A S = 4 Câu 21 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 4π C 2π D 3π Câu 22 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = D P = C P = A P = 2 Câu 23 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = Câu 24 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 25 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x − 5)2 + (y − 4)2 = 125 C x = D (x + 1)2 + (y − 2)2 = 125 −2 − 3i z + = Câu 26 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 27 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 Câu 28 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C √ D 13 Trang 2/5 Mã đề 001 Câu 29 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu 30 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Parabol C Đường tròn D Một đường thẳng Câu 31 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 Câu 32 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C π D 3π Câu 33 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 2; 3) D A(0; 0; 3) Câu 34 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 B C D A 2m 2m m 2m √ Câu 35 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Có tiệm cận ngang tiệm cận đứng C Không có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng a3 Câu 36 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 600 B 1350 C 450 D 300 Câu 37 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C π D −1 √ Câu 38 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B ( ; +∞) C (0; ) D (0; 1) 4 Câu 39 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (1; 2) B x = C (0; 3) D x = Câu 40 Trong hình đây, có hình đa diện? Hình A B Hình Hình C D Câu 41 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Hàm số có điểm cực đại điểm cực tiểu B Giá trị cực đại hàm số C Giá trị cực tiểu hàm số D Hàm số có hai điểm cực trị Trang 3/5 Mã đề 001 Câu 42 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 6a3 B V = 12a3 C V = 3a3 D V = a3 Câu 43 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) C Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) D Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) Câu 44 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 45 Cho khối lập phương có cạnh Thể tích khối lập phương cho A 83 B C D Câu 46 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (−∞; 1) C (2; +∞) D (1; +∞) Câu 47 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = C d = R D d < R Câu 48 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 17 B C D 15 Câu 49 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2 √ √ A 28 B 14 C 11 + D 18 + Câu 50 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln a B ln 6a2 C ln 32 D ln 32 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001