1. Trang chủ
  2. » Tất cả

Đề ôn tập thpt qg môn toán (588)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,73 KB

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho A = 1 + i2 + i4 + + i4k−2 + i4k, k ∈ N∗ Hỏi đâu là phư[.]

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho A = + i + i + · · · + i A A = 2ki B A = 2k 4k−2 + i , k ∈ N Hỏi đâu phương án đúng? C A = D A = 4k ∗ Câu Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 25 1 Câu Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B −31 C 17 D 31 Câu Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực −3 phần ảo là−2 C Phần thực phần ảo 2i D Phần thực là−3 phần ảo −2i 4(−3 + i) (3 − i)2 Câu Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √1 − 2i √ A |w| = B |w| = C |w| = 48 D |w| = 85 (1 + i)(2 − i) Câu Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 B 16π C 169 D 15 A 16π 15 Câu Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (−∞; 3) D (2; 3) Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 10 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 30◦ C 90◦ D 45◦ Câu 11 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 12 Cho hình chóp S ABC có đáy tam giác vuông B, S A vuông góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 45◦ C 30◦ D 90◦ Câu 13 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −4 D −2 x + mx + Câu 14 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B Khơng có m C m = −1 D m = Trang 1/5 Mã đề 001 √ Câu 15 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm Câu 16 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > m < − C m > D m < −2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 17 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ → − → − → − → C u + v = (1; 13; 16) D u + 3−v = (2; 14; 14) Câu 18 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (1; 5) D (3; 5) Câu 19 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 20 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 21 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 22 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 −2 − 3i Câu 23 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = √ − 2i A max |z| = B max |z| = C max |z| = D max |z| = z+i+1 số ảo? Câu 24 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường tròn B Một Parabol C Một đường thẳng D Một Elip Câu 25 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi đó√độ dài MN A MN = B MN = C MN = D MN = Câu 26 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = C r = 22 D r = √ Câu 27 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = 50 C |z| = 10 D |z| = √ Câu 28 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 2/5 Mã đề 001 Câu 29 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B C 5π D 25π A z Câu 30 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác C Tam giác OAB tam giác vuông D Tam giác OAB tam giác nhọn z+i+1 số ảo? z + z + 2i C Một Parabol D Một Elip Câu 31 Tìm tập hợp điểm M biểu diễn số phức z cho w = A Một đường thẳng B Một đường tròn Câu 32 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu 34 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể √ tích3 khối nón √ π.a π 2.a 2π.a3 4π 2.a3 A B C D 3 3 R Câu 35 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B −3 sin 3x + C C sin 3x + C D sin 3x + C 3 Câu 36 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π B V = C V = D V = A V = 3 5 R Câu 37 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu 38 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 x+1 Câu 39 Cho hàm số y = Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x A −1 B C D Câu 40 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Hàm số có điểm cực đại điểm cực tiểu B Giá trị cực tiểu hàm số C Hàm số có hai điểm cực trị D Giá trị cực đại hàm số Trang 3/5 Mã đề 001 Câu 41 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 42 Hình đa diện có cạnh? A 12 B 15 C 18 D 21 Câu 43 Trong hình đây, có hình đa diện? Hình A B Hình Hình C D Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 12a3 B V = 3a3 C V = 6a3 D V = a3 Câu 45 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 46 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 47 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox B 16π C 169 D 16π A 16 15 15 Câu 48 Tích tất nghiệm phương trình ln2 x + ln x − = B −3 C −2 D A e12 e3 Câu 49 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 50 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 22 a3 B 42 a3 C 62 a3 D 2a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 09:54

w