Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho các mệnh đề sau I Cho x, y là hai số phức thì số phức[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D (1 + i)2017 Câu Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D 25 1 Câu Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B −17 C −31 D 31 2017 + 2i + i có tổng phần thực phần ảo Câu Số phức z = 2−i A -1 B C D Câu Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = − i C z = −3 − i D z = −3 + i Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 52 C 41 D 43 A 21 Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (−1; 2) D (1; 2) R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A 41 B 12 C 27 D Câu 11 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = lnx3 B y′ = x ln1 C y′ = 1x D y′ = − x ln1 Câu 12 Cho hàm số y = ax+b có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm cx+d số cho trục hoành A (0; 2) B (−2; 0) C (0; −2) D (2; 0) Câu 13 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 − 3t y = + 3t y = −2 + 3t A B C D z = −4 − 5t z = − 5t z = + 5t z = − 5t Trang 1/5 Mã đề 001 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 14 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ √ Câu 15 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ (4; +∞) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình vơ nghiệm Câu 16 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = D P = + 2(ln a)2 x2 Câu 17 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 32 64 Câu 18 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B 6π C D 5 1+i Câu 19 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 25 A S = B S = C S = D S = 2 4 ′ Câu 20 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 B √ A √ C √ D 13 Câu 21 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = √ Câu 22 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = C |z| = 10 D |z| = 50 √ Câu 23 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 A |z| < B |z| > C < |z| < D ≤ |z| ≤ 2 2 Câu 24 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 4π C 2π D 3π −2 − 3i Câu 25 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 26 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = 22 B r = 20 C r = D r = Trang 2/5 Mã đề 001 −2 − 3i Câu 27 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 28 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác C Tam giác OAB tam giác nhọn z w B Tam giác OAB tam giác cân D Tam giác OAB tam giác vuông Câu 29 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C π D 3π z+i+1 Câu 30 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol z−z =2? Câu 31 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một Parabol C Một đường tròn D Một đường thẳng √ Câu 32 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| > B < |z| < C |z| < D ≤ |z| ≤ 2 2 Câu 33 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ d = 1200 Gọi Câu 34 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 B C D A a 15 3 Câu 35 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = C yCD = 36 D yCD = 52 Câu 36 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = 2x + 2017 Câu 37 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = R Câu 38 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = 2F(x) − + C D f (2x − 1)dx = F(2x − 1) + C Trang 3/5 Mã đề 001 Câu 39 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối lập phương B Khối bát diện C Khối mười hai mặt D Khối tứ diện Câu 40 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A 17 B C −35 D −10 Câu 41 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A Câu 42 Cho hàm số y = A B C D x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x B C −1 D Câu 43 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Điểm cực tiểu hàm số (0; 1) B Đồ thị hàm số có điểm cực đại C Đồ thị hàm số cắt trục tung điểm (0; 1) D Đồ thị hàm số khơng có tiệm cận Câu 44 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; +∞) B (−1; 0) C (−∞; 0) D (0; +∞) Câu 45 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 90◦ C 45◦ D 60◦ Câu 46 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (3; +∞) D (−∞; 1) Câu 47 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 15 B 17 C D Câu 48 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 49 Tập nghiệm bất phương trình x+1 < A [1; +∞) B (−∞; 1] C (−∞; 1) D (1; +∞) Câu 50 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B 23 πrl2 C πrl D 31 πr2 l Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001