Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Tìm số phức liên hợp của số phức z = i(3i + 1) A z = −3 +[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = + i C z = −3 − i D z = − i z2 Câu Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 Câu Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 + C 21008 D −21008 Câu Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 i Câu Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B 10 C −10 D −9 1 25 = + Câu Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B −31 C 17 D 31 Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2 B 28 A 18 + √ C 11 + D 14 Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) B C 13 D A 113 z−1 −3 Gọi (P) mặt Câu Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, đường tròn đáy đến mặt √ phẳng (S AB) √ khoảng cách từ tâm A 245 B C 245 D Câu 10 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 11 Cho cấp số nhân (un ) với u1 = công bội q = 21 Giá trị u3 A 27 B C 12 D 14 Câu 12 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B 83 C D √ Câu 13 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ [ 1; 3] Câu 14 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc DB′ Tính giá trị cos α.√ √ hai đường thẳng AC √ 3 A B C D Trang 1/5 Mã đề 001 Câu 15 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 16 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 17 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 26abc C P = 2abc √ 2x − x2 + Câu 18 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D P = 2a+2b+3c D Câu 19 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 A S = B S = C S = D S = 2 Câu 20 Gọi z1 z2 nghiệm phương trình z − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k 27 − i hoặcw = 27√+ i B w = + √27 hoặcw = − √27 A w = √ D w = + 27i hoặcw = − 27i C w = − 27 − i hoặcw = − 27 + i √ Câu 21 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 33 D |z| = A |z| = 10 Câu 22 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Một đường thẳng C Parabol D Hai đường thẳng Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 z−z =2? Câu 24 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một đường tròn C Một đường thẳng D Một Parabol Câu 25 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 √ Câu 26 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 33 C |z| = 10 D |z| = 50 Câu 27 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 A S = B S = C S = D S = 1+i z 25 Câu 28 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B π C 4π D 2π Trang 2/5 Mã đề 001 Câu 29 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 z Câu 30 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn B Tam giác OAB tam giác cân C Tam giác OAB tam giác vuông D Tam giác OAB tam giác z − z =2? Câu 31 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một đường tròn C Một Elip D Một đường thẳng √ Câu 32 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 33 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 34 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu 35 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −5 D f (−1) = −3 Câu 36 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu 37 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 m2 − 12 4m2 − A B C D 2m 2m m 2m Câu 38 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C ln + D ln − A − ln 2 2 ′ Câu 39 Cho hàm số y = f (x) liên tục R có đạo hàm f (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (0; +∞) B (−1; 0) C (−1; +∞) D (−∞; 0) Câu 40 Trong mệnh đề sau, mệnh đề đúng? A Hai khối chóp có diện tích đáy thể tích B Hai khối lăng trụ có chiều cao thể tích C Hai khối chóp tích D Hai khối lăng trụ thể tích 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; +∞) B Hàm số đồng biến khoảng (2; +∞) C Hàm số đồng biến tập xác định D Hàm số đồng biến khoảng (−2; 2) Câu 41 Cho hàm số y = Trang 3/5 Mã đề 001 Câu 42 Hàm số hàm số nghịch biến R? A y = x4 − 2x2 + B y = −x2 + 3x + C y = −x3 − 2x + D y = C 12 D 18 x−3 5−x Câu 43 Hình đa diện có cạnh? A 15 B 21 Câu 44 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A x = B x = C (1; 2) D (0; 3) Câu 45 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 90◦ C 30◦ D 45◦ Câu 46 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (1; 2) C (−∞; 1) D (2; +∞) Câu 47 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx C 43 B 32 A D Câu 48 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn A 17 Câu 49 Nếu A B R4 −1 35 f (x)dx = B C R4 g(x)dx = −1 R4 −1 35 D 18 35 [ f (x) + g(x)]dx C D −1 Câu 50 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 3 a B 2a C 33 a D 22 a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001