Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Với mọi số phức z, ta có |z + 1|2 bằng A z z + z + z + 1 B[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C z + z + D |z|2 + 2|z| + Câu 2.√Cho số phức z1 = + 2i,√z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 30 B 10 C 130 D 10 Câu Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C D Khơng có số Câu Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D Câu Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z − z = 2a D z + z = 2bi Câu Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (2; 3) C (−∞; 3) D (12; +∞) Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (−1; 2) D (1; 2) Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 30◦ C 60◦ D 45◦ Câu 10 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (2; 4; 6) C (−2; −4; −6) D (−1; −2; −3) Câu 11 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n3 = (1; 1; 1) C → n1 = (−1; 1; 1) D → n2 = (1; −1; 1) R Câu 12 Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = − x12 B F ′ (x) = 1x C F ′ (x) = ln x D F ′ (x) = x22 Câu 13 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = π R2 Câu 14 Biết sin 2xdx = ea Khi giá trị a là: A ln B − ln C D Trang 1/5 Mã đề 001 Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 23 25 B C D A 4 4 Câu 16 Tìm tất giá trị tham số m để hàm số y = mx + mx − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m > −2 D m < cos x π Câu 17 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A B ln + C ln + D ln + 5 5 2 x + mx + Câu 18 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B m = C Khơng có m D m = Câu 19 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D −2 − 3i z + = Câu 20 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện √ − 2i A max |z| = B max |z| = C max |z| = D max |z| = Câu 21 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức.√Để tam giác MNP √ số phức k A w = + √27 hoặcw = − √27 B w = −√ 27 − i hoặcw =√− 27 + i D w = 27 − i hoặcw = 27 + i C w = + 27i hoặcw = − 27i Câu 22 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A B √ C √ D √ 13 Câu 24 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = D P = B P = C P = 2 Câu 25 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Đường tròn C Một đường thẳng D Parabol Câu 26 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C π D 3π Câu 27 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 Câu 28 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 Trang 2/5 Mã đề 001 A B √ 2 C √ D √ 13 Câu 29 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = D P = C P = 2 Câu 30 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = √ x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 1√+ 27i hoặcw =√1 − 27i B w = + √ 27 hoặcw = −√ 27 C w = 27 − i hoặcw = 27 + i D w = − 27 − i hoặcw = − 27 + i Câu 31 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = 22 D r = z Câu 32 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn B Tam giác OAB tam giác cân C Tam giác OAB tam giác D Tam giác OAB tam giác vuông √ d = 1200 Gọi Câu 33 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ CC1 , BB1 Tính khoảng √ a a 15 a C D A a 15 B Câu 34 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ A ln + B − ln − R5 dx Câu 35 Biết = ln T Giá trị T là: 2x − √ A T = B T = C − ln 2 C T = 81 D ln − D T = Câu 36 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A (m2 ) B 3(m2 ) C (m2 ) D (m ) R Câu 37 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C − sin 3x + C D sin 3x + C 3 Câu 38 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 2π D 4π Câu 39 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 A V = B V = C V = D V = x+1 Câu 40 Cho hàm số y = Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x A B C D −1 Trang 3/5 Mã đề 001 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (2; +∞) B Hàm số đồng biến tập xác định Câu 41 Cho hàm số y = C Hàm số đồng biến khoảng (−2; 2) D Hàm số đồng biến khoảng (−2; +∞) Câu 42 Trong mệnh đề sau, mệnh đề đúng? A Hai khối lăng trụ có chiều cao thể tích B Hai khối lăng trụ thể tích C Hai khối chóp có diện tích đáy thể tích D Hai khối chóp tích Câu 43 Cho hàm số y = x+1 có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 điểm (C) d A B C D Câu 44 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = B Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = C Giá trị lớn hàm số f (x) đoạn [0; 2] D Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm Câu 45 Cho hàm số y = ax+b cx+d số cho trục hoành A (−2; 0) B (2; 0) C (0; 2) D (0; −2) Câu 46 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B 11 C D Câu 47 Cho khối lập phương có cạnh Thể tích khối lập phương cho A 83 B C D Câu 48 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (−2; 0) C (0; −2) D (0; 2) Câu 49 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 32 C D 43 Câu 50 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 33 a B 3 a C 22 a D 2a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001