1. Trang chủ
  2. » Khoa Học Tự Nhiên

CHUYÊN ĐỀ HÀM SỐ LỚP 10

10 4,4K 17

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 368,33 KB

Nội dung

Chuyeõn ủe ẹaùi soỏ 10 GV: Leõ Ngoùc Sụn_THPT Phan Chu Trinh 1 CHNG II. HM S BC NHT - HM S BC HAI CHUYấN 1. I CNG V HM S I. KIN THC C BN 1. nh ngha hm s: Cho D , D . Hm s f xỏc inh trờn D l mt quy tc t tng ng mi s xD vi mt s y xỏc nh duy nht, s ny ph thuc v x , kớ hiu fx f:D x y f(x) Chỳ ý: + D gl tp xỏc nh ca hm s + x gl bin s + y f(x) gl giỏ tr ca hm s f ti x Vớ d (hm s cho bi cụng thc): 2 yx 3x1;yx2 th ca hm s: Cho hm s y f(x) cú TX D . Trong mp Oxy th ca hm s f l tp hp G x; f(x) | x D 00 0 M x ;y D x D v 00 y f(x ) 2. S bin thiờn ca hm s: a) Hm s ng bin, nghch bin: Cho K , K : khong, na khong hoc on + Hm s f gl ng bin trờn 12 1 2 1 2 K x ,x K :x x f(x ) f(x ) + Hm s f gl nghch bin trờn 12 1 2 1 2 K x ,x K :x x f(x ) f(x ) b) Phng phỏp xột s bin thiờn ca hm s y f(x) trờn K : + Ly 12 1 2 x ,x K,x x . Lp t s: 12 12 f(x ) f(x ) A xx + Nu A0 thỡ hm s ng bin trờn K v ngc li Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 2 3. Hàm số chẵn, hàm số lẻ Cho hàm số y f(x) có TXĐ là D + Hàm số f đgl hàm số chẵn   xD xDD f( x) f(x)                đgl tập đối xứng + Hàm số f đgl hàm số lẻ   đgl tập đối xứngxD xDD f( x) f(x)                 II. CÁC DẠNG BÀI TẬP  Dạng 1. Tìm tập xác định của hàm số + Tìm điều kiện của biểu thức  TXĐ + Chú ý: 1 y f(x)   Điều kiện: f(x) 0 y f(x) Điều kiện: f(x) 0 1 y f(x)  Điều kiện f(x) 0  Bài tập 1. Tìm tập xác định của các hàm số sau: 1) 2x 13 y x7    2) 2 y x 7x 3 3) 2 11 3x y x 9x 14    4) x3 y x1    5) y 3 4x 6) x1 y x2    7)   2 x2 y x2x1    8) 2 xx y 1x    9) x 32 x y x2    10)    x1 4x y x 2x 3     11) 2 2x 3 y x 3x 2    12) 2 1 y x x1    Bài tập 2. Tìm tập xác định của các hàm số sau: 1) 5 y 3x x1    2) x1 x y x 2x    3)    x y x 1x 2   4) x2 y x1    5) 2 1 y x2 x4    6)    3 x7 y x 2x 3    Chuyeõn ủe ẹaùi soỏ 10 GV: Leõ Ngoùc Sụn_THPT Phan Chu Trinh 3 7) 2 x1 y x2 x 1 8) x1 y x 1x 2 9) 2 xx 1 y x 10) y 2x 7 x 1 6 x Dng 2. Kho sỏt s bin thiờn ca hm s + Cho y ax b . Vi 12 xx ta cú: 12 12 f(x ) f(x ) Aa xx + Cho 2 y ax bx c . Vi 12 xx ta cú: 12 12 12 f(x ) f(x ) b A ax x xx a + Cho ax b y cx d . Vi 12 xx ta cú: 12 12 12 f(x ) f(x ) ad bc A xx cx d cx d Bi tp 1. Kho sỏt s bin thiờn ca cỏc hm s sau: a) y 3x 4 b) 1 y x4 2 c) y ax b a 0 d) y ax b a 0 Bi tp 2. Kho sỏt s bin thiờn ca cỏc hm s sau: a) 2 y x 2x 2 trờn khong ; 1 , 1; a) 2 y 2x 4x 1 trờn khong ; 1 , 1; Bi tp 3. Kho sỏt s bin thiờn ca cỏc hm s sau: a) 2 y x3 trờn khong ; 3 , 3; a) 1 y x2 trờn khong ; 2 , 2; a) 3x 2 y x1 trờn khong ; 1 , 1; a) 1x y 2x 3 trờn khong 33 ;,; 22 Bi tp 4. Kho sỏt s bin thiờn ca cỏc hm s sau: a) 2005 yx 1 trờn b) y x 1x trờn ;1 Chuyeõn ủe ẹaùi soỏ 10 GV: Leõ Ngoùc Sụn_THPT Phan Chu Trinh 4 c) yx trờn 0; Bi tp 5. Kho sỏt s bin thiờn ca cỏc hm s sau: a) 2 x3 y x1 trờn 1; a) 2 x y x1 trờn 0; 1 Bi tp 6. Chng minh hm s y 2x 2x ng bin trờn 2;2 Dng 3. Xột tớnh chn, l ca hm s Bi tp 1. Xột tớnh chn, l ca cỏc hm s sau: a) 3 y f(x) 2x 5x b) 42 y f(x) x 2x 1 c) 3 x3 y f(x) x2 d) 2 y f(x) x x e) 2 x8 y f(x) 0 f) y f(x) 5 g) y f(x) 3x 9 h) 2 y x1 Bi tp 2. Xột tớnh chn, l ca cỏc hm s sau: a) y f(x) x 1 x b) 2x 3 2x 3 y f(x) x c) x1 x1 y f(x) x2 x2 d) y f(x) x 2 x 2 e) y f(x) 2x 1 2x 1 f) y f(x) x x g) 2 xx y f(x) x4 h) 3 3 y f(x) x 5 x 5 k) y f(x) 2 x 2 x Bi tp 3. Tỡm iu kin ca tham s a) y ax b l hm s l b) 2 y ax bx c l hm s chn Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 5  Bài tập 4. Định m để hàm số   22 y f x x mx m , x     là hàm chẵn  Bài tập 5. Xác định hàm số y f(x)  có TXĐ là  và vừa chẵn, vừa lẻ.  Bài tập 6. Cho hàm số y f(x) , y g(x) xác định trên  . Đặt S(x) f(x) g(x) và P(x) f(x).g(x) . Chứng minh: a) y f(x) y g(x)          là hàm số lẻ thì y S(x) là hàm số lẻ và y P(x) là hàm số chẵn b) y f(x) y g(x)          là hàm số chẵn thì y S(x) và y P(x) là hàm số chẵn c) lẻ chẵn y f(x) y g(x)          thì y P(x) lẻ  Dạng 4. Hàm số cho bởi nhiều cơng thức Dạng hàm số: 11 22 nn f (x) ,khi x D f (x) , khi x D y f (x) , khi x D                     Bài tập 1. Cho hàm số   2 2 x 2 khi 1 x 1 y f(x) x 1 khi x 1                a) Tìm TXĐ của hàm số b) Tính   2 f( 1),f(0),f ,f(1),f(2),f 3 2               Bài tập 2. Cho hàm số 3 2x 1 khi x 0 x2 y f(x) 2x 1 khi x 0 x1                     a) Tìm TXĐ của hàm số b) Tính f(0) , f(2) , f( 3) , f( 1)  Bài tập 3. Cho hàm số 2 2 x 2x khi x 1 y f(x) x1 x 1 khi x 1                 a) Tìm TXĐ của hàm số b) Tìm tung độ các điểm thuộc đồ thị hàm số f có hồnh độ lần lượt là 2 ,1, 5 Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 6 c) Tìm hồnh độ các điểm thuộc đồ thị hàm số f có tung độ bằng 3 CHUN ĐỀ 2. HÀM SỐ BẬC NHẤT I. KIẾN THỨC CƠ BẢN 1. Hàm số bậc nhất:   y ax b a 0  + Nếu a0  thì hàm số đồng biến trên  + Nếu a0 thì hàm số nghịch biến trên  2. Đồ thị Đồ thị hàm số y ax b có tính chất: + Là một đường thẳng có hệ số góc là a + Cắt Ox tại b A ;0 a            và cắt Oy tại   B 0; b 3. Hàm số y ax b Hàm số y ax b được viết lại như sau   b ax b khi x a y b ax b khi x a                    II. PHÂN DẠNG BÀI TẬP  Dạng 1. Đồ thị hàm số và các bài tốn liên quan  Bài tập 1. Vẽ đồ thị các hàm số sau: a) y x1 b) y 2x 3  c) 21 yx 33   d) 2x y1 5   Bài tập 2. Vẽ đồ thị các hàm số sau: a) y x1 b) y x2 c) 2x khi x 1 y x 3 khi x 1            d) y 2x 3 3  e)       x1 2x1 y 2x 4 1 x 2 2x 4 2 x 4                        Dạng 2. Xác định phương trình đường thẳng  Bài tập 1. Lập phương trình đường thẳng biết Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 7 a) Đi qua   M 1; 20  và   N 3; 8 b) Đi qua   I 2; 5 và có hệ số góc 3 k 2   Bài tập 2. Lập phương trình đường thẳng đi qua gốc O và a) Song song với đường thẳng y 7x 3 b) Vng góc với đường thẳng 1 y x1 3   Bài tập 3. Xác định a và b để đồ thị hàm số a) Đi qua hai điểm   A 2; 3 và   B 1; 4 b) Đi qua điểm   M 4; 3 và song song với đường thẳng 2 y x1 3   c) Cắt đường thẳng 1 d : y 2x 5 tại điểm có hồnh độ bằng 2 và cắt đường thẳng 2 d : y 3x 4  tại điểm có tung độ bằng y2 d) Song song với đường thẳng 1 yx 2  và đi qua giao điểm của 2 đường thẳng 1 y x1 2   và y 3x 5   Dạng 3. Một số bài tốn liên quan  Bài tập 1. Tìm tọa độ giao điểm của các cặp đường thẳng sau: a) y 3x 2 và y 2x 3 b) y 3x 2  và   y 4x 3 c) y 2x và y x3  d) x3 y 2   và 5x y 3    Bài tập 2. Với giá trị nào của m thì hàm số sau đồng biến, nghịch biến a)   y 3m 1 x m 3   b) y mx 3 x  c)   y 2m 5 x m 3   d)   y mx 2  Bài tập 3. Với giá trị nào của m thì các cặp đường thẳng sau cắt nhau, song song, trùng nhau, vng góc a)   y 3m 1 x m 3   và y 2x 1 b)   y mx 2 và   y 2m 3 x m 1   Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 8  Bài tập 4. Trong mỗi trường hợp sau, tìm giá trị nào của m sao cho 3 đường thẳng sau phân biệt và đồng quy a) 12 3 d :y 2x,d :y x 3,d :y mx 5     b)   1 23 d :y 5 x 1 ,d :y mx 3,d :y 3x m      c)   1 23 d :y 2x 1,d :y 8 x,d :y 3 2m x 2      d)   1 23 d :y 5 3m x m 2,d :y x 11,d :y x 3        e)   2 1 23 d :y x 5,d :y 2x 7,d :y m 2 x m 4         Bài tập 5. Tìm điểm cố định (điểm sao cho đường thẳng ln đi qua với m bất kì) của các đường thẳng sau: a) y 2mx 1 m  b) y mx 3 x  c)   y 2m 5 x m 3   d)   y mx 2 e)   y 2m 3 x 2  f)   y m 1 x 2m   Bài tập 6. Tìm m để hai đường thẳng y mx 3  vaf yxm a) Cắt nhau tại 1 điểm nằm trên trục tung a) Cắt nhau tại 1 điểm nằm trên trục hồnh  Bài tập 7. Cho 2 đường thẳng y 2x m 1  và y 3x m 1  a) Xác định tọa độ giao điểm A của 2 đồ thị nói trên b) Chứng minh rằng khi m thay đổi thì giao điểm A ln chạy trên một đường thẳng cố định CHUN ĐỀ 3. HÀM SỐ BẬC HAI  Dạng 1. Đồ thị hàm số  Bài tập 1. Lập bảng biến thiên và vẽ đồ thị các hàm số sau a) 2 y x 4x 5   b) 2 y x 6x c) 2 y 2x 4x 6   d) 2 1 y x x4 2    Bài tập 2. Cho hàm số 2 y x 2x 3 a) Lập bảng biến thiên và vẽ đồ thị hàm số trên b) Xác định GTNN của hàm số và giá trị tương ứng của x c) Tìm tập hợp giá trị x sao cho y0 Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 9 d) Tìm tập hợp giá trị x sao cho y0  Bài tập 3. Cho hàm số 2 y x 4x 3 a) Lập bảng biến thiên và vẽ đồ thị hàm số trên b) Xác định GTNN của hàm số và giá trị tương ứng của x c) Tìm tập hợp giá trị x sao cho y0 d) Tìm tập hợp giá trị x sao cho y0  Bài tập 4. Cho hàm số   2 y mx 2 m 2 x 3 m 1     . Chứng minh rằng với mọi m đồ thị hàm số ln đi qua 2 điểm cố định  Dạng 2. Xác định hệ số a,b,c của 2 y ax bx c   Bài tập 1. Xác định   2 P : y ax bx c  biết   P a) Đi qua 3 điểm       A 0; 1 , B 1; 1 , C 1; 1   b) Đi qua   A 8; 0 và có đỉnh   I 6; 12  Bài tập 2. Xác định   2 P : y ax bx c  biết   P c) Đi qua 3 điểm       A 2; 1 , B 3; 2 , C 0;1 d) Đi qua   A 2; 3 và có đỉnh   I 1; 1 e) Nhận x3 là trục đối xứng, qua   M 5; 6  và cắt Oy tại điểm có hồnh độ bằng 2   Bài tập 3. Xác định   2 P : y ax bx c  biết   P đạt GTNN bằng 3 4 khi 1 x 2  và nhận giá trị y1 tại x1  Bài tập 4. Xác định   2 P : y 2x bx c  biết rằng đồ thị: a) Có trục đối xứng là x1 và cắt trục tung tại   A 0; 4 b) Có đỉnh là   I 1; 2 c) Có hồnh độ đỉnh là 2 và đi qua điểm   M 1; 2  Bài tập 5. Xác định   2 P : y ax bx 2  biết rằng đồ thị: a) Đi qua 2 điểm   M 1; 5 ,   N 2; 8 b) Đi qua   A 3; 4 và có trục đối xứng là 3 x 2  Chuyên đề Đại số 10 GV: Lê Ngọc Sơn_THPT Phan Chu Trinh 10 c) Đi qua   B 1; 6 , đỉnh có tung độ 1 4   Bài tập 6. Xác định   2 P : y 2x bx c    biết rằng đồ thị: a) Có đỉnh   I 1; 3 b) Đi qua 2 điểm   M 0; 2 và   N 2; 0 c) Có trục đối xứng x2 và cắt trục hồnh tại điểm   H 2; 0 d) Đi qua   P 2; 3 và có hồnh độ đỉnh là 3  Dạng 3. Tương giao của parabol và đường thẳng  Bài tập 1. Tìm toạ độ giao điểm của các cặp đồ thị của các hàm số sau: a) 2 y x1; y x 2x1    b) 2 yx3;yx4x1      c) 2 y 2x 5; y x 4x 4  d) 22 yx 2x1;yx 4x4  e) 22 y 3x 4x 1; y 3x 2x 1      f) 22 y2xx1;y xx1       Bài tập 2. Cho   2 P : y x 2x và d : y 2x m . Xác định m để a)   P cắt d tại 2 điểm phân biệt b)   P tiếp xúc với d  Bài tập 3. Cho   2 x P :y 2  và m d : y mx 1 2   . a) Chứng minh rằng d ln đi qua một điểm cố định khi m thay đổi b) Tìm m để   P tiếp xúc với d. Khi đó, tìm tọa độ tiếp điểm  Bài tập 4. Chứng minh rằng các parabol   2 y mx 4m 1 x 4m 1   với m0 ln tiếp xúc với một đường thẳng cố định.  Bài tập 5. Chứng minh rằng các đường thẳng 2 y 2mx m 4m 2   ln ln tiếp xúc với một parabol cố định. . và song song với đường thẳng 2 y x1 3   c) Cắt đường thẳng 1 d : y 2x 5 tại điểm có hồnh độ bằng 2 và cắt đường thẳng 2 d : y 3x 4  tại điểm có tung độ bằng y2 d) Song song. 5 và có hệ số góc 3 k 2   Bài tập 2. Lập phương trình đường thẳng đi qua gốc O và a) Song song với đường thẳng y 7x 3 b) Vng góc với đường thẳng 1 y x1 3   Bài tập 3. Xác định. Chuyeõn ủe ẹaùi so 10 GV: Leõ Ngoùc Sụn_THPT Phan Chu Trinh 1 CHNG II. HM S BC NHT - HM S BC HAI CHUYấN 1. I CNG V HM S I. KIN THC

Ngày đăng: 01/05/2014, 22:02

TỪ KHÓA LIÊN QUAN

w