Bộ đề thi HKI lớp 10 môn toán hay của các trường THPT chuyên Bộ đề thi HKI lớp 10 môn toán hay của các trường THPT chuyên Bộ đề thi HKI lớp 10 môn toán hay của các trường THPT chuyên Bộ đề thi HKI lớp 10 môn toán hay của các trường THPT chuyên Bộ đề thi HKI lớp 10 môn toán hay của các trường THPT chuyên
http://trithuctoan.blogspot.com/ 1 TRƯỜNG THPT CHUN NGUYỄ N QUANG DIÊU BỘ ĐỀ ÔN TẬP HKI LỚP 10 NĂM HỌC: 2011 – 2012 http://trithuctoan.blogspot.com/ 2 ĐỀ SỐ 1 Gv biên soạn: Huỳnh Chí Hào I. PHẦN CHUNG (7,0 điểm) Câu I ( 1 điểm) Cho 3 tập hợp [ ] 2 ; 3A = − , [ ) 2 ;B = +∞ , ( ) 4 ; 5C = − . Tìm A B∩ ; A B∪ ; B C∩ ; \ C B . Câu II ( 2 điểm) 1) Xác định các hệ số a, b của Parabol 2 3y ax bx= + − biết rằng Parabol đi qua điểm ( ) 5 ; 8A − và có trục đối xứng 2x = .Vẽ Parabol tìm được. 2) Cho Parabol (P): 2 4 3y x x= − + . Xác định m để (P) và đường thẳng (d): 2 7y mx m= − + cắt nhau tại 2 điểm có hồnh độ trái dấu. Câu III ( 3 điểm) 1) Giải các phương trình: a) 2 2 3 9x x x x+ − + = + b) 2 2 2 2 1 x x − + = − + c) 2 3 89 25 32 2 x x x − = với 0 ; 1x x> ≠ . 2) Tìm m để phương trình sau có nghiệm 3 1 2 2 3 1 1 1 − −+ − + − = − − x mx m x x x . . Câu IV ( 2 điểm) Trong mặt phẳng Oxy, cho tam giác ABC với A(– 5; 6 ); B(– 4; – 1); C(4; 3) a) Tìm tọa độ trực tâm H của tam giác ABC. b) Tìm điểm M thuộc trục Oy sao cho T = 3 2 M A 3 M B 4 4MA 3 MB 2MC+ + − + ngắn nhất. II. PHẦN RIÊNG (3,0 điểm) (Học sinh chọn Va và VIa hay Vb và VIb) A. Theo chương trình chuẩn. Câu Va ( 2,0 điểm) 1) Cho phương trình mmx x xx 22 2 42 2 −+= − +− . Tìm m để phương trình có 2 nghiệm phân biệt . 2) Chứng minh rằng với 3 số a, b, c dương ta có: abcc a c b c b a b a 8≥ + + + Câu VIa (1,0 điểm) Cho hình bình hành ABCD có AB = 3a; AD = 5a; góc BAD = 0 120 . Tính các tích vơ hướng sau .AB AD ; .AC BD . B. Theo chương trình nâng cao. Câu Vb ( điểm) 1) Giải hệ phương trình 2 2 3 2 3 2 x x y y y x = + = + . 2) Cho phương trình 0 1 2 = − ++ x mxmx . Tìm m để phương trình có hai nghiệm dương phân biệt. Câu Vb ( 1,0 điểm)Cho hình bình hành ABCD có AB = 3a; AD = 5a; góc BAD = 0 120 . Tính độ dài đoạn BD và bán kính đường tròn ngoại tiếp tam giác ABC. SỞ GD & ĐT ĐỒNG THÁP THPT Chun Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ƠN THI HỌC KỲ I Năm h ọc 2011-2012 Mơn TỐN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 3 ĐỀ SỐ 2 Gv biên soạn: Nguyễn Quốc Quận I . PHẦN CHUNG CHO TẤT CẢ CHƯƠNG TRÌNH ( 7 điểm) Câu I. ( 1 điểm) Cho Hai tập ( ] 5;3−=A và [ ) 7;1=B . Tìm A \ B, A∩B , A∪B và B \ A Câu II. Cho hàm số y = x 2 + bx + c có đồ thị là (P) a/ Tìm b, c biết (P) có đỉnh I(–2 ; –1) b/ Lập bảng biến thiên và vẽ đồ thị hàm số khi b = 4 ; c = 3 Câu III. 1/ Giải các phương trình : 112 −=−− xx 2/ Tìm m để phương trình sau có một nghiệm . ( ) 0121 2 =−+− xxm Câu IV. Trong hệ hệ trục (Oxy) cho tam giác có các đỉnh A(5 ; 6), B(4 ; –1) và C(– 4 ; 3) a/ Tìm tọa độ trung điểm I của đoạn AC và Tọa độ điểm D sao cho tứ giác ABCD là hình bình hành b/ Tìm tọa độ trực tâm tam giác ABC II. PHẦN RIÊNG ( 3 điểm) 1 . Theo chương trình chuẩn Câu Va. 1/ Giải phương trình sau: 723 2 −−=− xxx 2/ Cho hai số thực a, b. Chứng minh: a 2 + b 2 + 4 ≥ ab + 2(a + b) Câu VIa. Cho tam giác ABC. Tìm tập hợp các điểm M thỏa: ABACABAM = 1 . Theo chương trình nâng cao Câu Vb. 1/ Giải hệ phương trình =+ =− 2 12 2 22 yxy yx 2/ Giải phương trình: ( ) ( ) 1653 44 =+++ xx Câu VIb. G là trọng tâm tam giác ABC.Chứng minh ( ) 222 6 1 cbaGAGCGCGBGBGA ++−=++ SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Th ời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 4 ĐỀ SỐ 3 Gv biên soạn: Nguyễn Đình Huy I. PHẦN CHUNG CHO TẤT CẢ CÁC HỌC SINH (7.0 điểm) Câu I ( 1,0 điểm) Cho hai tập hợp : A = {0;1;2}, B= {0;1;2;3;4}. Xác định các tập hợp C sao cho A C B∪ = . Câu II (2,0 điểm) 1) Tìm tọa độ giao điểm của parabol 2 y x 2x 3= − − với trục Ox. 2) Lập bảng biến thiên và vẽ đồ thị hàm số 2 y x 2x 3= − − . Câu III ( 3,0 điểm) 1) Tìm m để phương trình sau có 3 nghiệm : x 2 x 2 m x− − + = − 2) Cho phương trình: 2 (m 2)x 2mx 1 0+ − − = ( m: tham số) a) Chứng minh rằng phương trình đã cho luôn có nghiệm với mọi giá trị của m. b) Xác định m để phương trình đã cho có hai nghiệm sao cho chúng là độ dài hai cạnh của một tam giác vuông có cạnh huyền bằng 6 . Câu IV ( 2,0 điểm) Cho hình bình hành ABCD, I là giao điểm hai đường chéo AC và BD. Biết A(15;2), B(3;-1), I(6;2). 1) Tìm tọa độ hai điểm C và D. 2) Gọi M là trọng tâm tam giác ABD, N là trọng tâm tam giác BCI. P là điểm sao cho 4 PC PB 5 = − . Chứng minh ba điểm M, N, P thẳng hàng. II. PHẦN RIÊNG (3 điểm) 1. Theo chương trình chuẩn Câu Va ( 2,0 điểm) 1) Giải phương trình: x 1 3 x 1 6 2 x 1 x 1 − − − + = − − 2) Chứng minh rằng với mọi số dương a, b, c ta luôn có: a b b c c a 6 c a b + + + + + ≥ Câu VIa (1,0 điểm) Cho hình thang vuông ABCD có đường cao AD = 2a, đáy bé AB = a và góc BCD bằng 45 o . Tính giá trị biểu thức sau theo a: S AB.CD AD.BC= + . 2. Theo chương trình nâng cao Câu Vb (2 điểm) 1) Giải phương trình : 2 x 2x (4 x)(6 x) 12 0− − + − − = . 2) Giải hệ phương trình: 2 2 x 1 y(y x) 4y (x 1 ) ( y x 2) y + + + = + + − = Câu Vb ( 1,0 điểm) Cho tam giác ABC. Chứng minh rằng ta có: sinC = sinA.cosB + sinB.cosA. SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 5 ĐỀ SỐ 4 Gv biên soạn: Đoàn Thị Xuân Mai I. PHẦN CHUNG CHO TẤT CẢ CÁC HỌC SINH (7.0 điểm) Câu I ( 1,0 điểm) Cho các tập hợp {{{ }}} {{{ }}} [[[ ))) 2;3C,1x/RxB,3x/ZxA −−−===−−−>>>∈∈∈===≤≤≤∈∈∈=== . Tìm các tập hợp: BC,CB,BA R ∪∪∪∩∩∩ Câu II (2,0 điểm) 1)Lập bảng biến thiên và vẽ đồ thị )P( của hàm số x4x2y 2 −−−=== . 2) Tìm tọa độ các giao điểm c ủa )P( với đường thẳng 2xy:)d( −−−=== . Vẽ )d( trên cùng một hệ trục với )P( . Câu III ( 3,0 điểm) 1)Giải các phương trình: a/ 0)5x6x()3x4x( 2222 ===+++−−−−−−+++−−− b/ 1xx 15 )1x(x 2 22 ++++++ ===++++++ 2)Cho phương trình: 01mx4x 2 ===++++++−−− ( m là tham số) a/ Tìm m để phương trình đã cho có hai nghiệm dương phân biệt. b/ Tìm m để phương trình đã cho có hai nghiệm phân biệt 21 x,x thỏa 8xx 21 ===+++ Câu IV ( 2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho ba điểm )3;m2(M,)2;2(B,)1;3(A −−− 1) Tìm m để 3 điểm M,B,A thẳng hàng. 2) Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại C . II. PHẦN RIÊNG (3 điểm) 1. Theo chương trình chuẩn Câu Va ( 2,0 điểm) 1) Tìm m để phương trình sau có nghiệm x1 x1 2xm 2 −−−=== −−− −−− 2)Chứng minh rằng với mọi số dương a, b ta luôn có: 32 a b 1 b a 1 44 ≥≥≥ ++++++ +++ Câu VIa (1,0 điểm)Cho tam giác ABC có aBC,bAC,cAB ========= và trung tuyến cAM === . Chứng minh rằng: )CsinB(sin2Asin 222 −−−=== 2. Theo chương trình nâng cao Câu Vb (2 điểm) 1)Giải hệ phương trình : +++=== +++=== x 1 x2y3 y 1 y2x3 2 2 . 2)Gọi 21 x,x là hai nghiệm của phương trình 0mmx)1m(2x2 22 ===++++++++++++ . Tìm giá trị lớn nhất của biểu thức )xx(3xx2A 2121 +++−−−=== và xác định giá trị tương ứng của m khi A lớn nhất. Câu Vb ( 1,0 điểm)Cho tam giác ABC có aBC,bAC,cAB ========= và đường cao BC 2 1 AH === . Chứng minh rằng : CcosBcosR bc Ccos c Bcos b ===+++ (với R là bán kính đường tròn ngoại tiếp tam giác ABC ) SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 6 ĐỀ SỐ 5 Gv biên soạn: Phạm Trọng Thư I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Caâu I . (1, 0 điểm) Cho tập hợp { } 1 2 3 4 5 6S ; ; ; ; ; .= 1) Tìm các tập hợp con A, B của S sao cho { } { } 1 2 3 4 1 2A B ; ; ; , A B ; ∪ =∩ = ⋅ 2) Tìm các tập C sao cho C (A B) A B.∪ ∩ = ∪ Caâu II . (2, 0 điểm) 1)Vẽ đường thẳng 4y 3x .= + 2) Xác định a, c để đồ thị hàm số 2 4y ax x c= − + đi qua hai điểm 1 3 2 5A(; ) , B ( ; ).− 3) Xác định giao điểm của hai đồ thị trên. Caâu III . (3, 0 điểm) 1) Giải phương trình 2 2 27 x x x 5 3 x x .− + + = − − 2) Giải và biện luận phương trình 3 2 4 4 1m x m m(x ).− − = − Caâu IV . (2,0 điểm) Trong mặt phẳng tọa độ Oxy, tìm điểm M biết 1) MNPQ là hình bình hành với 5 2 1 8N(2; 3), P( ; ), Q( ; ).− − 2) M thuộc trục hoành và góc giữa hai vectơ MA, MB là 135 o với tọa độ các điểm 3 1A(4; 3), B( ; ).− II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B). A. Theo chương trình chuẩn Caâu Va . (2, 0 điểm) 1) Giải phương trình 1 3 1 3 1 x x 2x x − − + = ⋅ − + 2) Cho a, b là hai số dương. Chứng minh: 2 2 2 1 1 a b ( a b). a b + + + ≥ + Caâu VIa . (1, 0 điểm) Cho tam giác ABC có các cạnh 5 3 7BC , AC , AB .= = = Tính AB. AC và AB. BC. B. Theo chương trình nâng cao Caâu Vb . (2, 0 điểm) 1) Giải hệ phương trình 3 2 2 3 2 2 30 0 11 0 x y(1 y) x y (2 y) xy x y x(1 y y ) y . + + + + − = + + + + − = 2) Giải phương trình 4 4 4 (5 2x) (2 3x) (5x 7) .− + − = − Caâu VIb . (1, 0 điểm) Cho tam giác ABC có 120 6 o A , AB.AC= = − và 16AM.BC = − (với M là trung điểm của BC). Tính độ dài các cạnh AB và AC. SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 7 ĐỀ SỐ 6 Gv biên soạn: Nguyễn Thùy Trang I. PHẦN CHUNG (7 điểm) Câu I (1 điểm) Cho hai tập hợp : >−∈= 4 3 1/ xRxA và { } 21/ ≤+∈= xRxA . Tìm A B∪ , A B∩ , \ A B và. AC R Câu II (2 điểm) 1) Xác định a và c sao cho parabol ( )P : 2 4y ax x c= − + cắt trục hoành tại điểm có hoành độ bằng 3 và nhận đường thẳng 2x = làm trục đối xứng. Vẽ ( )P với a và c vừa tìm. 2) Kế đó, hãy xác định m sao cho đường thẳng 3y m= + luôn có điểm chung với ( )P . Câu III (3 điểm) 1) Giải các phương trình sau: a) 2 1 1 1x x x− − + = + b) 2 2 1 1 x x x x + = − + 2) Tìm m để phương trình 2 1 0x m x m+ + − = có nghiệm duy nhất. Câu IV (2 điểm) Cho tam giác MNP . Gọi (2;2)A , (5; 1 )B − và (5;3)C lần lượt là trung điểm của ba cạnh MN , NP và PM . 1) Tìm tọa độ ba đỉnh M , N , P . 2) Chứng minh hai tam giác MNP và ABC có cùng trọng tâm. 3) Tìm tọa độ hình chiếu vuông góc của C xuống đường thẳng AB . II. PHẦN RIÊNG (3 điểm) ( Học sinh chọn một trong hai phần) A. Theo chương trình chuẩn Câu Va (2 điểm) 1) Giải phương trình : 2 1 3 x x x + − = 2) Cho [ ] 1 ; 1a ∈ − . Chứng minh rằng : 2 1 1a 2 a− ≤ . Dấu đẳng thức xảy ra khi nào? Câu VIa (1 điểm) Cho tam giác ABC có BC a= , CA b= , AB c= . Vẽ về phía ngoài tam giác hai hình vuông ACEF và BCDK . Chứng minh : . .CA CB CD CE= − và . 0AD EB = . B. Theo chương trình nâng cao Câu Vb (2 điểm) 1) Giải hệ phương trình sau : ( )( ) ( )( ) 2 2 1 1 3 1 1 6 x x y y x y + + + + = − − = 2) Giải phương trình : 2 2 5 5 2 10 11x x x x− + = − + − . Câu VIb (1 điểm) Cho S là diện tích tam giác ABC . Chứng minh : ( ) 2 2 2 1 . . 2 S AB AC AB AC= − . Hết SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 8 ĐỀ SỐ 7 Gv biên soạn: Trần Huỳnh Mai I. PHẦN CHUNG CHO TẤT CẢ CÁC HỌC SINH (7.0 điểm) Câu I ( 1,0 điểm) Cho A = > − ∈ 3 1 1 x Rx ; B = { } 12 <−∈ xRx ; C = { } 3≤∈ xRx . Tìm B∩ C, A∪ C . Câu II (2,0 điểm) 1) Cho hàm số y = c bx x ++ 2 (P) a) Tìm b và c để hàm số đạt giá trị nhỏ nhất bằng -1 khi x = 1. b) Khảo sát sự biến thiên và vẽ đồ thị (P) vừa tìm được. 2) Cho hàm số y = m x x +− 2 2 có đồ thị (P’). Tìm m để (P’) cắt trục hoành tại 2 điểm phân biệt A, B sao cho OA = 5OB. Câu III ( 3,0 điểm) 1) Giải phương trình 5 3 2314 + =−−+ x xx 2) Tìm các giá trị của a để phương trình 2 1 2 − + = − − x x a x ax vô nghiệm . Câu IV ( 2,0 điểm) Trong mp (Oxy) cho tam giác ABC có C(-2;-4) và trọng tâm G(0;4) biết M(2;0) là trung điểm của BC. a) Hãy tìm tọa độ của A, B và xác định tâm của đường tròn ngoại tiếp tam giác ABC. b) Tìm điểm P trên Ox sao cho →→ + PBPA đạt giá trị nhỏ nhất. II. PHẦN RIÊNG (3 điểm) 1. Theo chương trình chuẩn Câu Va ( 2,0 điểm) 1) Giải phương trình: 3 1 42 12 44 2 2 = − − + +− +− x x xx xx 2) Cho 3 số dương a, b, c. Chứng minh bacacbcbaaccbba ++ + ++ + ++ ≥ + + + + + 2 1 2 1 2 1 3 1 3 1 3 1 Câu VIa (1,0 điểm) Trong mp(Oxy), cho 2 điểm A(1;0), B(3:2). Tìm tọa độ 2 điểm C và D sao cho tứ giác ABCD là hình thoi thỏa 0 120= Λ ABC 2. Theo chương trình nâng cao Câu Vb (2 điểm) 1) Giải phương trình: 1635223132 2 −+++=+++ xxxxx 2) Giải hệ phương trình: =+ =+ 222 22 51 6 xyx xxyy Câu Vb ( 1,0 điểm) Cho tam giác ABC cân tại A nội tiếp trong đường tròn tâm O bán kính R , AB = x (x > 0). Định x để diện tích tam giác ABC lớn nhất. SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 9 ĐỀ SỐ 8 Gv biên soạn: Ngô Phong Phú I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I ( 1 điểm) Cho 3 tập hợp [ ] 1 ; 5A = − , [ ) 3 ;B = +∞ . Tìm A B∩ ; A B∪ \ A B . Câu II ( 2 điểm) 1) Xác định các hệ số a, b của Parabol 2 3y ax bx= + − biết rằng Parabol có đỉnh ( ) 1 ; 2I − . Vẽ Parabol tìm được. 2) Tìm giao điểm của Parabol (P): 2 4 3y x x= − + và đường thẳng d: y = 2x+1. Câu III ( 3 điểm) 1) Giải các phương trình: 2 2 3 5 1x x x+ − = + . 2) Tìm m để phương trình 2 8 2( 2) 3 0x m x m− + + − = có hai nghiệm 1 2 ,x x thỏa mãn hệ thức 1 2 (4 1 ) ( 4 1 ) 18x x+ + = . Câu IV ( 2 điểm) Trong mặt phẳng Oxy, cho tam giác ABC với A(5; 3 ); B(2; –1); C(–1; 5) 1) Tìm tọa độ điểm D sao cho C là trọng tâm tam giác ABD. 2) Tìm tọa độ chân đường cao kẻ từ A của tam giác ABC. II. PHẦN RIÊNG (3,0 điểm) (Học sinh chọn Va và VIa hay Vb và VIb) A. Theo chương trình chuẩn. Câu Va ( 2,0 điểm) 1) Giải phương trình 2 2 ( 3 ) 3 22 3 7x x x x− + − = − + 2) Chứng minh rằng với 3 số thực a, b, c ta có: 2 ( ) 3 a b c ab bc ca + + + + ≤ Câu VIa (1,0 điểm) Cho hai điểm A( –1;0), B(6 ; 3). Tìm tọa độ điểm C thuộc trục Ox sao cho ABC∆ vuông tại C. B. Theo chương trình nâng cao. Câu Vb ( điểm) 1) Giải hệ phương trình 2 2 4 2 ( ) 10 x y xy y y x + = − + = . 2) Giải phương trình 2 2 5 5 5 8 3x x x x− + + − + = . Câu Vb ( 1,0 điểm) Cho tam giác ABC vuông tại A và có BC=6. Trên đường thẳng BC lấy h a i điểm D và E sao cho BD = BE =1. Tính 2 2 2 2AD AE AC+ + Hết SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 10 . điểm của BC). Tính độ dài các cạnh AB và AC. SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10. THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/ 10. giác ABC ) SỞ GD & ĐT ĐỒNG THÁP THPT Chuyên Nguyễn Quang Diêu Ngày thi HKI thứ Tư - 28/12/2011 ĐỀ ÔN THI HỌC KỲ I Năm h ọc 2011-2012 Môn TOÁN - Lớp 10 Thời gian làm bài 90 phút http://trithuctoan.blogspot.com/