Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Với mọi số phức z, ta có |z + 1|2 bằng A z z + z + z + 1 B[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Với số phức z, ta có |z + 1|2 B z + z + C z2 + 2z + D |z|2 + 2|z| + A z · z + z + z + 4(−3 + i) (3 − i)2 Câu Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √1 − 2i A |w| = 48 B |w| = C |w| = D |w| = 85 − 2i (1 − i)(2 + i) + Câu Phần thực số phức z = 2−i + 3i 29 29 11 11 A B − C D − 13 13 13 13 2017 + 2i + i có tổng phần thực phần ảo Câu Số phức z = 2−i A B -1 C D Câu Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 10i C −3 + 2i !2016 !2018 1+i 1−i + Câu Số phức z = 1−i 1+i A + i B C −2 D −3 − 2i D Câu Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn B 18 C 354 D 359 A 71 35 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 43 C D 23 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = − x ln1 B y′ = 1x C y′ = x ln1 D y′ = lnx3 Câu 10 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 11 C D 12 Câu 11 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = z+3 Điểm thuộc d? −1 −2 A P(1; 2; 3) B N(2; 1; 2) C M(2; −1; −2) D Q(1; 2; −3) Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (1; 2) D (−1; 2) Câu 13 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D 3x Câu 14 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C Không tồn m D m = −2 Trang 1/5 Mã đề 001 Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 27 29 25 A B C D 4 4 Câu 16 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x > y D Nếu a > a x > ay ⇔ x < y Câu 17 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 2 10 Câu 18 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 125π 250π 500π A B C D 9 z+i+1 Câu 19 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Elip B Một đường thẳng C Một Parabol D Một đường tròn −2 − 3i Câu 20 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = √ Câu 21 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 10 D |z| = A |z| = 33 Câu 22 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 5π B C 25π D Câu 23 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = D max T = 10 A max T = Câu 24 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 25 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Câu 26 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 B √ C D √ A √ 13 Câu 27 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Hai đường thẳng C Một đường thẳng D Đường tròn Câu 28 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 4π C 3π D 2π Trang 2/5 Mã đề 001 Câu 29 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 z Câu 30 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác vuông D Tam giác OAB tam giác Câu 31 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C −1 D Câu 32 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = 22 C r = D r = Câu 33 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = x4 + C y = −x4 + 2x2 + D y = −x4 + Câu 34 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B m = C −2 < m < D < m < R Câu 35 Biết f (u)du = F(u) + C Mệnh đề đúng? R R B f (2x − 1)dx = 2F(2x − 1) + C A f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(x) − + C D f (2x − 1)dx = F(2x − 1) + C Câu 36 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể tích khối nón √ 2π.a3 π.a3 π 2.a3 4π 2.a3 B C D A 3 3 Câu 37 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C 2π D π R Câu 38 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C −3 sin 3x + C D sin 3x + C 3 ′ ′ ′ ′ Câu 39 Cho hình lăng trụ đứng ABC.A B C có AA = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 12a3 B V = a3 C V = 3a3 D V = 6a3 Câu 40 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A B −35 C 17 D −10 Câu 41 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) C Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) Câu 42 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số có điểm cực đại B Đồ thị hàm số khơng có tiệm cận C Đồ thị hàm số cắt trục tung điểm (0; 1) D Điểm cực tiểu hàm số (0; 1) Trang 3/5 Mã đề 001 Câu 43 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối lập phương B Khối tứ diện C Khối bát diện D Khối mười hai mặt Câu 44 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; 0) B (−1; +∞) C (0; +∞) D (−∞; 0) Câu 45 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (3; +∞) C (12; +∞) D (2; 3) Câu 46 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 30 D 225 Câu 47 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (1; 2) D (2; +∞) Câu 48 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 49 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B 17 C 15 D Câu 50 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl B 13 πr2 l C 32 πrl2 D 2πrl Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001