Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn z = (1 + i)(2 + i) 1 − i + (1 − i)([.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho số phức z thỏa mãn z = đúng? A z = B |z| = z (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết luận 1−i 1+i D z = z C z số ảo Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = 2i D P = + i Câu Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu Cho hai√số phức z1 = + i z2 = − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n1 = (−1; 1; 1) C → n4 = (1; 1; −1) D → n3 = (1; 1; 1) Câu Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (−∞; 1) D (3; +∞) = y−1 = Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 13 B 113 C D Câu 10 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A Q(1; 2; −3) B N(2; 1; 2) C P(1; 2; 3) z+3 −2 z−1 −3 Gọi (P) mặt Điểm thuộc d? D M(2; −1; −2) Câu 11 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 A 15 B 16π C 169 D 16π 15 Câu 12 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (2; 4; 6) C (1; 2; 3) D (−2; −4; −6) Trang 1/5 Mã đề 001 Câu 13 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 14 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 15 Chọn mệnh đề mệnh đề sau: R R e2x A sin xdx = cos x + C B e2x dx = +C R R (2x + 1)3 x x + C C dx =5 + C D (2x + 1) dx = r 3x + Câu 16 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−∞; 0) Câu 17 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 Câu 18 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 19 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = 10 C max T = D max T = A max T = Câu 20 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k √ z1 , z2 số phức A w = √ 27 − i hoặcw = 27√+ i B w = + √27 hoặcw = − √27 C w = − 27 − i hoặcw = − 27 + i D w = + 27i hoặcw = − 27i √ Câu 21 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 C < |z| < D ≤ |z| ≤ A |z| > B |z| < 2 2 Câu 22 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z − z =2? Câu 23 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol z Câu 24 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn B Tam giác OAB tam giác C Tam giác OAB tam giác cân D Tam giác OAB tam giác vuông √ Câu 25 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = 10 C |z| = D |z| = 33 Trang 2/5 Mã đề 001 −2 − 3i Câu 26 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 27 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = − 27 27 + i B w = 1√+ 27i hoặcw =√1 − 27i √ − i hoặcw = − √ C w = + 27 hoặcw = − 27 D w = 27 − i hoặcw = 27 + i Câu 28 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi độ dài MN √ A MN = B MN = C MN = D MN = Câu 29 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 30 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 31 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A B √ C √ D √ 13 Câu 32 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C 2π D π Câu 33 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B [2; +∞) C (1; 2] D (−∞; 2] Câu 34 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C 4π D π Câu 35 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 Câu 36 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = ′ Câu 37 Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 38 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = −1 D f (−1) = Trang 3/5 Mã đề 001 Câu 39 Trong mệnh đề sau, mệnh đề đúng? A Hai khối lăng trụ thể tích B Hai khối chóp có diện tích đáy thể tích C Hai khối lăng trụ có chiều cao thể tích D Hai khối chóp tích Câu 40 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = a3 B V = 6a3 C V = 3a3 D V = 12a3 Câu 41 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Giá trị cực tiểu hàm số B Hàm số có hai điểm cực trị C Giá trị cực đại hàm số D Hàm số có điểm cực đại điểm cực tiểu Câu 42 Hình đa diện có cạnh? A 12 B 21 C 15 D 18 Câu 43 Hàm số hàm số nghịch biến R? x−3 A y = B y = −x2 + 3x + C y = −x3 − 2x + D y = x4 − 2x2 + 5−x 2x − Câu 44 Cho hàm số y = Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; 2) B Hàm số đồng biến khoảng (2; +∞) C Hàm số đồng biến khoảng (−2; +∞) D Hàm số đồng biến tập xác định Câu 45 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 45◦ D 30◦ Câu 46 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 16π B 16 C 16π D 169 15 15 Câu 47 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 34 C 23 D Câu 48 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n3 = (1; 1; 1) C → n4 = (1; 1; −1) D → n1 = (−1; 1; 1) Câu 49 Cho số phức z = + 9i, phần thực số phức z2 A B 36 C 85 D −77 R4 R4 R4 Câu 50 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001