Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Mô đun của số phức z = (1 + i)(2 − i) 1 + 3i là A |z| = √[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 (1 + i)(2 − i) Câu Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = (1 + i)(2 + i) (1 − i)(2 − i) Câu Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết luận 1−i 1+i đúng? A z số ảo B z = C z = z D |z| = z !2016 !2018 1−i 1+i + Câu Số phức z = 1−i 1+i A B C −2 D + i − 2i (1 − i)(2 + i) Câu Phần thực số phức z = + 2−i + 3i 29 29 11 11 A B − C − D 13 13 13 13 Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D √ Câu Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B m ≥ m ≤ C ≤ m ≤ D m ≥ m ≤ −1 Câu Cho số phức z = + 9i, phần thực số phức z2 A 85 B C 36 Câu Có số nguyên x thỏa mãn log3 A 186 B 184 x2 −16 343 < log7 C 193 D −77 x2 −16 ? 27 D 92 Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; −2; −3) C (1; −2; 3) D (−1; 2; 3) Câu 10 Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 48 B 49 C 89 D 90 Câu 11 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B 15 C 17 D Câu 12 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (−6; 7) C (7; 6) D (7; −6) Câu 13 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 26abc C P = 2a+b+c D P = 2abc Trang 1/5 Mã đề 001 Câu 14 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 B C D A 10 Câu 15 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 16 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 D R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 17 Biết hàm F(x) nguyên hàm hàm f (x) = cos x π F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A B ln + C ln + D ln + 5 5 Câu 18 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 10π C 12π D 6π Câu 19 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Parabol C Hai đường thẳng D Một đường thẳng Câu 20 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x − 1)2 + (y − 4)2 = 125 2 C (x + 1) + (y − 2) = 125 D x = −2 − 3i z + = Câu 21 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 22 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z Câu 23 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác cân C Tam giác OAB tam giác D Tam giác OAB tam giác nhọn Câu 24 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D 1+i Câu 25 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ Trang 2/5 Mã đề 001 A S = 25 B S = 25 C S = 15 D S = 15 Câu 26 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn C Tam giác OAB tam giác Câu 27 Biết số phức z thỏa mãn |z − − 4i| = Tính |z| √ √ A |z| = B |z| = 10 z w B Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân √ biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn C |z| = √ 33 D |z| = 50 Câu 28 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D Câu 29 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 30 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 A S = B S = C S = 4 D S = 1+i z 25 Câu 31 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Parabol C Một đường thẳng D Hai đường thẳng Câu 32 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(−3; 1; 1) C C(5; 9; 5) D C(3; 7; 4) Câu 34 Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A − ln − B ln − C ln + ; y = 0; x = 0; x = (x + 1)(x + 2)2 D − ln 2 Câu 35 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 2; 3) C A(1; 0; 3) D A(0; 0; 3) R Câu R36 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu 37 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều√cao tứ diện √ tiếp √ 2π 2.a π 2.a2 π 3.a2 A B C D π 3.a2 3 Trang 3/5 Mã đề 001 Câu 38 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π A V = B V = C V = D V = 5 3 Câu 39 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Hàm số có điểm cực đại điểm cực tiểu B Hàm số có hai điểm cực trị C Giá trị cực tiểu hàm số D Giá trị cực đại hàm số Câu 40 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số có điểm cực đại B Điểm cực tiểu hàm số (0; 1) C Đồ thị hàm số khơng có tiệm cận D Đồ thị hàm số cắt trục tung điểm (0; 1) Câu 41 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y A y = 2x + x−1 B y = 2x − x+1 −∞ C y = 2x − x−1 Câu 42 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (0; 3) B (1; 2) C x = D y = 2x + x−1 D x = Câu 43 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; +∞) B (0; +∞) C (−1; 0) D (−∞; 0) Câu 44 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 45 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 90◦ D 30◦ Câu 46 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2 A 11 + B 14 C 28 √ D 18 + Câu 47 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (−∞; 1) D (1; 2) Câu 48 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B C 11 D Câu 49 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: R4 R4 R4 Câu 50 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001