Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho z là một số phức Xét các mệnh đề sau I Nếu z = z thì z[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D (1 + i)(2 + i) (1 − i)(2 − i) Câu Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết luận 1−i 1+i đúng? A z = B |z| = C z số ảo D z = z z Câu Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B P(−2; 3) C Q(−2; −3) D M(2; −3) Câu Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −22016 D −21008 Câu Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực phần ảo 2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu Cho số phức z thỏa mãn z = −i √ √ √1 − 2i √ A |w| = 85 B |w| = C |w| = 48 D |w| = Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d > R C d < R D d = Câu Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A 27 B C 14 D 12 Câu Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B 17 C 354 D 35 A 359 Câu 10 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C 12 D Câu 11 Đồ thị hàm số có dạng đường cong hình bên? A y = x4 − 3x2 + B y = x2 − 4x + C y = x−3 D y = x3 − 3x − x−1 Câu 12 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt √ phẳng (S AB) 24 A B 24 C D d Câu 13 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng A a B 2a C a D a Trang 1/5 Mã đề 001 x2 Câu 14 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 A B C D 32 64 128 Câu 15 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A x dx =5 x + C B (2x + 1)2 dx = + C R R e2x C e2x dx = +C D sin xdx = cos x + C Câu 16 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ A B C D 2 Câu 17 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 x+cos3x Câu 18 Tính đạo hàm hàm số y = A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln z − z =2? Câu 19 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một đường thẳng C Một đường tròn D Một Parabol Câu 20 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 Câu 21 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 3π C π D 4π √ Câu 22 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 23 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C D 25π Câu 24 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = 20 C r = D r = Câu 25 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 4π C π D 2π √ Câu 26 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu 27 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol Câu 28 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 2 C (x − 5) + (y − 4) = 125 D x = Trang 2/5 Mã đề 001 Câu 29 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 27√− i hoặcw = 27 √ + i B w = + 27i hoặcw = − √ √ 27i C w = + 27 hoặcw = − 27 D w = − 27 − i hoặcw = − 27 + i −2 − 3i Câu 30 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = z+i+1 Câu 31 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Elip B Một đường tròn C Một đường thẳng D Một Parabol Câu 32 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 4π C 3π D 2π Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 Câu 34 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B < m < C Không tồn m D m < 3 x−1 y+2 z Câu 35 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x + y + 2z = √ Câu 36 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang khơng có tiệm cận đứng Câu 37 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2) C (−∞; 2] D (1; 2] Câu 38 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln(ab) = ln a ln b D ln( ) = b ln b Câu 39 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) Câu 40 Hàm số hàm số nghịch biến R? A y = −x3 − 2x + B y = −x2 + 3x + C y = x4 − 2x2 + D y = x−3 5−x Trang 3/5 Mã đề 001 Câu 41 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −35 B −10 C D 17 Câu 42 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 B Giá trị lớn hàm số f (x) đoạn [0; 2] C Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = D Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = Câu 43 Trong hình đây, có hình đa diện? Hình A B Hình Hình C Câu 44 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (1; 2) B (0; 3) C x = D D x = Câu 45 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; 2) C (2; +∞) D (1; +∞) Câu 46 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2 √ √ A 18 + B 28 C 14 D 11 + Câu 47 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 43 B 32 C Câu 48 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = − x ln1 B y′ = x ln1 C y′ = lnx3 D D y′ = 1x Câu 49 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 3 a B 22 a C 2a D 33 a Câu 50 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 60◦ C 90◦ D 30◦ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001