Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z1 = 3 + 2i, z2 = 2 − i Giá trị của biểu thức[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu 1.√Cho số phức z1 = + 2i, √ z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ A 30 B 10 C 10 D 130 (1 + i)(2 − i) Câu Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = + 7i C w = −3 − 3i D w = − 3i Câu Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + D |z|2 + 2|z| + C z + z + Câu Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 30◦ D 45◦ Câu Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường tròn Tâm đường trịn có tọa độ A (0; −2) B (−2; 0) C (0; 2) D (2; 0) Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B 113 C 31 D z−1 −3 Gọi (P) mặt Câu 10 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 25 B 12 C 34 D 14 Câu 11 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A Q(1; 2; −3) B M(2; −1; −2) C P(1; 2; 3) z+3 −2 Điểm thuộc d? D N(2; 1; 2) Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 6a2 B ln 32 C ln a D ln 32 Câu 13 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m < −2 C m > m < −1 D m > m < − Trang 1/5 Mã đề 001 Câu 14 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 15 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B 6π C D 5 Câu 16 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 D R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 17 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + B log2 2250 = A log2 2250 = n n 2mn + n + 2mn + 2n + D log2 2250 = C log2 2250 = m n Câu 18 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 19 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = C r = 22 D r = √ Câu 20 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 21 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 25π B C D 5π Câu 22 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Câu 23 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = Câu 24 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√độ dài MN √ A MN = B MN = C MN = D MN = √ Câu 25 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A < |z| < B |z| > C ≤ |z| ≤ D |z| < 2 2 Trang 2/5 Mã đề 001 √ Câu 26 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 1 B |z| > C ≤ |z| ≤ D |z| < A < |z| < 2 2 √ Câu 27 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = 33 C |z| = 50 D |z| = Câu 28 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ C P = D P = B P = A P = 2 Câu 29 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x + 1)2 + (y − 2)2 = 125 B (x − 5)2 + (y − 4)2 = 125 C x = D (x − 1)2 + (y − 4)2 = 125 Câu 30 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x + y − = D x − y + = Câu 31 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C 25π D Câu 32 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ C √ D B √ 13 Câu 33 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln + C − ln D − ln − A ln − 2 2 ′′ Câu 34 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = −1 C f (−1) = −5 D f (−1) = Câu 35 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C m < D < m < 3 Câu 36 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , −1 C m , D m = R Câu 37 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C − sin 3x + C D sin 3x + C 3 Câu 38 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C − D 6 Trang 3/5 Mã đề 001 Câu 39 Hàm số hàm số nghịch biến R? x−3 A y = −x3 − 2x + B y = −x2 + 3x + C y = D y = x4 − 2x2 + 5−x Câu 40 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−∞; 0) B (−1; 0) C (0; +∞) D (−1; +∞) Câu 41 Hình đa diện có cạnh? A 21 B 15 C 18 D 12 Câu 42 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y −∞ 2x + 2x − 2x + 2x − B y = C y = D y = x+1 x−1 x−1 x−1 Câu 43 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 3a3 B V = a3 C V = 12a3 D V = 6a3 A y = Câu 44 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = B Giá trị lớn hàm số f (x) đoạn [0; 2] C Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = D Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 Câu 45 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường√ tròn đáy cho AB = 12, đường tròn đáy đến mặt phẳng (S AB) √ khoảng cách từ tâm A B C 24 D 245 Câu 46 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 105 C 30 D 210 Câu 47 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (−1; 2) C (0; 1) D (1; 2) Câu R48 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu 49 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 11 C 12 D Trang 4/5 Mã đề 001 Câu 50 Đồ thị hàm số có dạng đường cong hình bên? A y = x4 − 3x2 + B y = x2 − 4x + C y = x−3 x−1 D y = x3 − 3x − Trang 5/5 Mã đề 001