Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z = 3 − 2i Tìm phần thực và phần ảo của số phứ[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B 10 C −9 D −10 Câu Những số sau vừa số thực vừa số ảo? A Không có số B C Chỉ có số D C.Truehỉ có số z2 Câu Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ C 13 D 11 A B 2(1 + 2i) Câu Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D (1 + i)2017 Câu Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D Câu Đồ thị hàm số có dạng đường cong hình bên? D y = x4 − 3x2 + A y = x3 − 3x − B y = x2 − 4x + C y = x−3 x−1 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = 1x B y′ = x ln1 C y′ = lnx3 D y′ = − x ln1 Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B 13 C 113 D z−1 −3 Gọi (P) mặt Câu 10 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (1; 2; 3) C (2; 4; 6) D (−2; −4; −6) Câu R11 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = − sin x + x2 + C B f (x)dx = sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: r 3x + Câu 13 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; 0) C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 14 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 1/5 Mã đề 001 √ Câu 15 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình vơ nghiệm C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ [ 1; 3] Câu 16 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = + C B sin xdx = cos x + C R R e2x +C C x dx =5 x + C D e2x dx = Câu 17 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = 0 d Câu 18 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ A a B a C 2a D a Câu 19 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = 20 D r = √ Câu 20 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A ≤ |z| ≤ B |z| > C < |z| < D |z| < 2 2 Câu 21 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 2π C π D 4π Câu 22 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = Câu 23 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 24 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = số phức k √ x + iy mặt phẳng phức.√Để tam giác MNP √ A w = + √27i hoặcw = − √ 27i B w = −√ 27 − i hoặcw =√− 27 + i D w = 27 − i hoặcw = 27 + i C w = + 27 hoặcw = − 27 √ Câu 25 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = C |z| = 33 D |z| = 10 Câu 26 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B π C 4π D 2π √ Câu 27 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 2/5 Mã đề 001 Câu 28 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 A S = B S = C S = 2 1+i z 15 D S = −2 − 3i Câu 29 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 30 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ Để tam giác MNP √ số phức k √ z1 , z2 số phức w√ = x + iy mặt phẳng phức 27 + i B w = 27√− i hoặcw = 27 +√i A w = − 27 √ − i hoặcw = − √ D w = + 27i hoặcw = − 27i C w = + 27 hoặcw = − 27 √ Câu 31 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = 10 C |z| = D |z| = 50 Câu 32 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 2π C 4π D 3π √ Câu 33 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B (0; ) C (1; +∞) D (0; 1) A ( ; +∞) 4 Câu 34 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = −2 √ sin 2x Câu 35 Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D yCD = 52 D Câu 36 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều√cao tứ diện √ √ tiếp √ π 3.a2 π 2.a2 2π 2.a B π 3.a C D A 3 Câu 37 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 38 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(0; 1; 2) Câu 39 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y −∞ 2x − 2x + 2x + B y = C y = x−1 x−1 x−1 Câu 40 Hình đa diện có cạnh? A y = D y = 2x − x+1 Trang 3/5 Mã đề 001 A 12 B 21 C 18 D 15 Câu 41 Trong mệnh đề sau, mệnh đề đúng? A Hai khối lăng trụ có chiều cao thể tích B Hai khối chóp tích C Hai khối lăng trụ thể tích D Hai khối chóp có diện tích đáy thể tích Câu 42 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 43 Cho hàm số y = A x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x B C −1 D Câu 44 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; +∞) B (−∞; 0) C (−1; 0) D (0; +∞) Câu 45 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 46 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 2a3 B 42 a3 C 62 a3 D 22 a3 Câu 47 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d < R C d = D d > R Câu 48 Cho R x A F ′ (x) = ln x dx = F(x) + C Khẳng định đúng? B F ′ (x) = − x12 C F ′ (x) = x2 D F ′ (x) = 1x Câu 49 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 12 C D 11 Câu 50 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = x ln1 B y′ = − x ln1 C y′ = 1x D y′ = ln x Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001