Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Những số nào sau đây vừa là số thực và vừa là số ảo? A Chỉ[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Những số sau vừa số thực vừa số ảo? A Chỉ có số B Khơng có số C C.Truehỉ có số D Câu Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 − i C z = + i D z = −3 + i Câu Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D − 2i (1 − i)(2 + i) Câu Phần thực số phức z = + 2−i + 3i 29 11 29 11 B C D − A − 13 13 13 13 2017 (1 + i) Câu Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D Câu Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B C −10 D 10 Câu Cho khối lập phương có cạnh Thể tích khối lập phương cho A B 83 C D i R2 R h1 Câu Nếu f (x)dx = f (x) − dx A B C D −2 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 10 Tích tất nghiệm phương trình ln2 x + ln x − = A e13 B −3 C e12 D −2 Câu 11 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 42 a3 B 22 a3 C 62 a3 D 2a3 Câu 12 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 60◦ C 30◦ D 90◦ Câu 13 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 14 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (2; 14; 14) A u + v = (1; 13; 16) B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Trang 1/5 Mã đề 001 Câu 15 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t A B C D z = + 5t z = − 5t z = −4 − 5t z = − 5t Câu 16 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 17 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx (x2 − 2x)dx |x2 − 2x|dx x2 + mx + đạt cực tiểu điểm x = Câu 18 Tìm tất giá trị tham số m để hàm số y = x+1 A Khơng có m B m = −1 C m = D m = −2 − 3i Câu 19 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ C max |z| = D max |z| = A max |z| = B max |z| = √ Câu 20 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = 1+i z Câu 21 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 25 A S = B S = C S = D S = 4 Câu 22 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B x = 2 C (x + 1) + (y − 2) = 125 D (x − 1)2 + (y − 4)2 = 125 Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C √ D 13 Câu 24 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 Câu 25 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D z+i+1 Câu 26 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường thẳng B Một đường tròn C Một Parabol D Một Elip Trang 2/5 Mã đề 001 Câu 27 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ Để tam giác MNP √ số phức k √ z1 , z2 số phức w√ = x + iy mặt phẳng phức − i hoặcw = − 27 + i B w = 27 − i hoặcw = 27 +√i A w = − 27 √ √ √ D w = + 27i hoặcw = − 27i C w = + 27 hoặcw = − 27 Câu 28 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 15 B S = C S = A S = 2 1+i z 25 √ Câu 29 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A < |z| < B |z| < C ≤ |z| ≤ D |z| > 2 2 D S = Câu 30 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 31 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi độ dài MN √ B MN = C MN = D MN = A MN = Câu 32 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 R Câu 33 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B sin 3x + C C −3 sin 3x + C D − sin 3x + C 3 Câu 34 Đạo hàm hàm số y = log √2 3x − là: 6 2 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln log Câu 35 Cho a > a , Giá √ trị a A B √ a bằng? C Câu 36 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = D D yCD = 36 Câu 37 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 3π D 2π Câu 38 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C −1 D Câu 39 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −35 B −10 C D 17 Câu 40 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (0; +∞) B (−1; +∞) C (−1; 0) D (−∞; 0) Trang 3/5 Mã đề 001 Câu 41 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) D Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) Câu 42 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 3a3 B V = 6a3 C V = 12a3 Câu 43 Hàm số hàm số nghịch biến R? x−3 A y = −x3 − 2x + B y = C y = −x2 + 3x + 5−x D V = a3 D y = x4 − 2x2 + Câu 44 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A x = B (1; 2) C (0; 3) D x = Câu 45 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3) có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm Câu 46 Cho hàm số y = ax+b cx+d số cho trục hoành A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Câu 47 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ A B C 24 D 245 Câu 48 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 49 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (2; 0) C (0; 2) D (0; −2) Câu 50 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 2a3 B 62 a3 C 42 a3 D 22 a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001