Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho z là một số phức Xét các mệnh đề sau I Nếu z = z thì z[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số phức B Mô-đun số phức z số thực D Mô-đun số phức z số thực dương Câu Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = − i C z = + i D z = −3 + i √ Câu Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ −1 C m ≥ m ≤ D −1 ≤ m ≤ Câu Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C M(2; −3) D N(2; 3) − 2i (1 − i)(2 + i) Câu Phần thực số phức z = + 2−i + 3i 11 11 29 29 A − B C − D 13 13 13 13 2 Câu Trong không gian 0xyz, cho mặt cầu (S ) : x + y + z − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−2; −4; −6) C (−1; −2; −3) D (2; 4; 6) Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (1; 2) D (−1; 2) Câu 10 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 15 B C D 17 Câu 11 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 30◦ C 90◦ D 45◦ Câu 12 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B 13 C 113 D z−1 −3 Gọi (P) mặt Câu 13 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 10 16 11 17 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 14 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → Trang 1/5 Mã đề 001 x = − 2t y = −2 + 3t A z = + 5t x = + 2t y = −2 − 3t B z = − 5t x = −1 + 2t y = + 3t C z = −4 − 5t Câu 15 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B 6π C ln + x = + 2t y = −2 + 3t D z = − 5t π cos x F(− ) = π Khi giá trị sin x + cos x 6π Câu 16 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D 3π ln + D y = −2x4 + 4x2 Câu 17 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 18 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x4 + 3x2 4x + C y = D y = x3 + 3x2 + 6x − x+2 √ Câu 19 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = D |z| = 33 A |z| = 10 z Câu 20 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác vuông D Tam giác OAB tam giác Câu 21 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 3π C 4π D π √ Câu 22 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C D √ 13 Câu 24 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Câu 25 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = 20 D r = Câu 26 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Trang 2/5 Mã đề 001 Câu 27 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn số phức k √ z1 , z2 số phức √ w = x + iy mặt phẳng phức.√Để tam giác MNP √ A w = 27√− i hoặcw = 27 +√i B w = − 27 27 + i √ − i hoặcw = − √ D w = + 27 hoặcw = − 27 C w = + 27i hoặcw = − 27i Câu 28 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Một đường thẳng C Parabol D Hai đường thẳng Câu 29 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 2π D 4π Câu 30 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 D A √ B √ C √ 13 Câu 31 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ D MN = A MN = B MN = C MN = z − z =2? Câu 32 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một Elip C Một Parabol D Một đường thẳng Câu 33 Cho a, b hai số thực dương Mệnh đề đúng? ln a a A ln(ab) = ln a ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab2 ) = ln a + ln b Câu 34 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = 81 D T = Câu 35 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 log Câu 36 Cho a > a , Giá √ trị a A B √ a bằng? C D Câu 37 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B ( ; +∞) C ( ; 2] [22; +∞) D [ ; 2] [22; +∞) 4 Câu 38 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C π D 2π Câu 39 Trong hình đây, có hình đa diện? Trang 3/5 Mã đề 001 Hình A Câu 40 Cho hàm số y = A −1 B Hình Hình C D x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x B C D Câu 41 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số có điểm cực đại B Đồ thị hàm số khơng có tiệm cận C Đồ thị hàm số cắt trục tung điểm (0; 1) D Điểm cực tiểu hàm số (0; 1) Câu 42 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối lập phương B Khối mười hai mặt C Khối bát diện D Khối tứ diện Câu 43 Cho hàm số y = điểm (C) d A x+1 có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 B C D Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 6a3 B V = 3a3 C V = a3 D V = 12a3 Câu 45 Tập nghiệm bất phương trình x+1 < A [1; +∞) B (−∞; 1) C (−∞; 1] D (1; +∞) Câu 46 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 11 C 12 D Câu 47 Đồ thị hàm số có dạng đường cong hình bên? A y = x4 − 3x2 + B y = x2 − 4x + C y = x−3 D y = x3 − 3x − x−1 Câu 48 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 49 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 32 B 34 C D Câu 50 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A 35 B 35 C 35 D 71 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001