Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn z = 4(−3 + i) 1 − 2i + (3 − i)2 −i[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu Cho số phức z thỏa mãn z = −i √ √ √ √ − 2i A |w| = B |w| = 48 C |w| = 85 D |w| = √ Câu Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C m ≥ m ≤ D ≤ m ≤ Câu Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 i B (1 + i)2018 = −21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 Câu √ z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = + 2i, B 10 C 10 D 30 A 130 Câu Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z + z + C z2 + 2z + Câu Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực D Mô-đun số phức z số thực dương D z · z + z + z + Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n1 = (−1; 1; 1) C → n2 = (1; −1; 1) D → n3 = (1; 1; 1) Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B C D 11 Câu 10 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B C 17 D 15 Câu R11 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 13 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 3 B C − D − A 4 4 Câu 14 Hai số phức z1 = + i z2 = − 3i nghiệm phương trình sau đây? A z2 − (1 + 4i)z + − 7i = B z2 + (5 − 2i)z − + 7i = C z2 + (1 + 4i)z − + 7i = D z2 − (5 − 2i)z + − 7i = Câu 15 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −8 B C −12 D 12 Trang 1/5 Mã đề 001 Câu 16 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo√âm) Khi đó, mơ-đun √ số phức w = m2 − 3m +√i ? B |w| = C |w| = 73 D |w| = A |w| = Câu 17 Gọi z1 , z2 , z3 ba nghiệm phức phương trình z3 −z2 +2 = Khi tổngP = |z1 +z2 +z3 +2−3i| bao nhiêu? √ √ A P = 13 B P = C P = D P = Câu 18 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z2 | +√|z3 | + |z4 | √ √ B T = C T = + D T = A T = + Câu 19 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Parabol C Đường tròn D Một đường thẳng Câu 20 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 21 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 22 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C 2π D π √ Câu 23 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 10 C |z| = 50 D |z| = 33 A |z| = √ Câu 24 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A < |z| < B ≤ |z| ≤ C |z| > D |z| < 2 2 Câu 25 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C D √ 13 −2 − 3i Câu 26 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 27 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 2π C 4π D π Câu 28 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = Câu 29 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C −1 D Trang 2/5 Mã đề 001 Câu 30 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k √ z1 , z2 số phức B w = + 27 hoặcw = − A w = 27√− i hoặcw = 27 +√i √ √ 27 C w = + 27i hoặcw = − 27i D w = − 27 − i hoặcw = − 27 + i √ Câu 31 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = √ Câu 32 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 C |z| < D < |z| < A |z| > B ≤ |z| ≤ 2 2 2 Câu 33 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 | + |z1 − z2 |2 A 18 B C D Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số thực không dương C z số ảo D |z| = Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 38 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 2x − Câu 39 Cho hàm số y = Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; 2) B Hàm số đồng biến khoảng (−2; +∞) C Hàm số đồng biến tập xác định D Hàm số đồng biến khoảng (2; +∞) Câu 40 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; 0) B (−1; +∞) C (−∞; 0) D (0; +∞) Câu 41 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A x = B (1; 2) C x = D (0; 3) Câu 42 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) D Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) Câu 43 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối bát diện B Khối lập phương C Khối mười hai mặt D Khối tứ diện Trang 3/5 Mã đề 001 Câu 44 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Giá trị cực đại hàm số B Giá trị cực tiểu hàm số C Hàm số có điểm cực đại điểm cực tiểu D Hàm số có hai điểm cực trị Câu 45 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 46 Cho cấp số nhân (un ) với u1 = công bội q = 21 Giá trị u3 B 72 A C 41 D 12 Câu 47 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn A 35 B 17 C 35 D 18 35 Câu 48 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 49 Cho hàm số f (x) = cos x + x Khẳng định đúng? A R f (x)dx = sin x + x2 + C B R f (x)dx = − sin x + C R f (x)dx = − sin x + x2 + C D R f (x)dx = sin x + x2 x2 + C + C Câu 50 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ A a √ B a C √ 2a √ D a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001