Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho z là một số phức Xét các mệnh đề sau I Nếu z = z thì z[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z − z = 2a C z · z = a2 − b2 D |z2 | = |z|2 A z + z = 2bi Câu Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −22016 D −21008 Câu Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = C A = 2ki D A = 2k (1 + i)(2 + i) (1 − i)(2 − i) Câu Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết luận 1−i 1+i đúng? A |z| = B z số ảo C z = D z = z z Câu Tính √ √ mô-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 34 D |z| = A |z| = B |z| = 34 C |z| = 34 3 Câu Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 B 12 C 27 D A 41 Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 42 a3 B 2a3 C 62 a3 D 22 a3 Câu Cho hàm số y = ax+b có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm cx+d số cho trục hoành A (0; 2) B (2; 0) C (−2; 0) D (0; −2) Câu 10 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 90◦ C 45◦ D 30◦ = y−2 = Câu 11 Trong không gian Oxyz, cho đường thẳng d : x−1 −1 A P(1; 2; 3) B Q(1; 2; −3) C N(2; 1; 2) z+3 −2 Điểm thuộc d? D M(2; −1; −2) Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (0; 1) D (1; 0) Câu 13 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 A T = B T = C T = D T = Câu 14 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −8 B C 12 D −12 Trang 1/5 Mã đề 001 Câu 15 Gọi z1 , z2 , z3 ba nghiệm phức phương trình z3 −z2 +2 = Khi tổngP = |z1 +z2 +z3 +2−3i| bao √ nhiêu? √ B P = C P = D P = 13 A P = Câu 16 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z√2 | + |z3 | + |z4 | √ √ A T = B T = C T = + D T = + Câu 17 Tất bậc hai số phức z = 15 − 8i là: A + i −4 + i B − i −4 + i C − 2i −5 + 2i D − i + 3i Câu 18 Phương trình (2 − i)z + 3(1 + iz) = + 8i có nghiệm A z = −3 + i B z = + i C z = −3 − i D z = − i Câu 19 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 √ Câu 20 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = 33 C |z| = 10 D |z| = Câu 21 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x − 1)2 + (y − 4)2 = 125 C x = D (x + 1)2 + (y − 2)2 = 125 Câu 22 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D √ Câu 23 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu 24 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một đường tròn C Một Elip D Một Parabol −2 − 3i Câu 25 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = √ Câu 26 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = 50 C |z| = D |z| = 10 Câu 27 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C 5π D Câu 28 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 √ Câu 29 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 30 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = Trang 2/5 Mã đề 001 Câu 31 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D Câu 32 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = D max T = A max T = 10 Câu 33 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = B P = −2016 C max T = D P = 2016 Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = C T = D T = 13 A T = 13 3 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C 2 D z Câu 36 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 B C D A √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B ≤ |z| ≤ C < |z| < D |z| < 2 2 2016 Câu 38 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = −2016 D P = 2016 x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] Câu 39 Cho hàm số y = 3−x A −1 B C D Câu 40 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối tứ diện B Khối bát diện C Khối lập phương D Khối mười hai mặt Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = a3 B V = 12a3 C V = 6a3 D V = 3a3 2x − Câu 42 Cho hàm số y = Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (2; +∞) B Hàm số đồng biến tập xác định C Hàm số đồng biến khoảng (−2; +∞) D Hàm số đồng biến khoảng (−2; 2) Câu 43 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; 0) B (−∞; 0) C (−1; +∞) D (0; +∞) Câu 44 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A x = B (1; 2) C (0; 3) D x = Câu 45 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Trang 3/5 Mã đề 001 Câu 46 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = π1 xπ−1 D y′ = πxπ−1 có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm Câu 47 Cho hàm số y = ax+b cx+d số cho trục hoành A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 48 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B 15 C D 17 Câu 49 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 34 C 23 D Câu 50 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001