C 1 1 MỞ ĐẦU 1 1 Lý do chọn đề tài Thực hiện đổi mới của giáo dục hiện nay, đó là không chỉ dạy kiến thức cho các em, mà cần dạy cả phương pháp suy luận, khả năng vận dụng, khả năng kết nối các môn kh[.]
1 MỞ ĐẦU 1.1 Lý chọn đề tài: Thực đổi giáo dục nay, là: không dạy kiến thức cho em, mà cần dạy phương pháp suy luận, khả vận dụng, khả kết nối môn khoa học, hướng tư khái quát phát minh khoa học Người thầy phải thực điều hướng dẫn hoc sinh thực tiết học Tất nhiên để làm được, người thầy phải có khả trên, với yêu nghề đam mê khoa học, đồng thời phải có phương pháp tạo tình có vấn đề cho hoc sinh, từ đưa tư tưởng phát minh vào tiết học, với xuất phát điểm phải từ SGK sau phát triển tốn, dạng toán lên để đáp ứng nhu cầu học tập học sinh Hệ phương trình nội dung quan trọng chương trình tốn phổ thơng Hệ phương trình có nhiều dạng cách giải khác Đơn giản hệ hai phương trình bậc hai ẩn, hệ ba phương trình bậc ba ẩn Hệ hai phương trình bậc hai ẩn học sinh học cấp hai, đến lớp 10 ôn tập lại học hệ ba phương trình bậc ba ẩn Hệ đối xứng loại I, hệ đối xứng loại II, hệ đẳng cấp nhiều hệ phương trình khơng mẫu mực khác học sinh khơng tìm hiểu thức chương trình học, nhà trường có biết thơng qua tài liệu tham khảo, tự học Chính bồi dưỡng học sinh giỏi khơng đơn cung cấp cho em hệ thống tập nhiều, tốt, khó hay mà phải cần rèn luyện khả sáng tạo cho học sinh Dạng tốn giải Giải hệ phương trình mảnh đất thuận lợi cho thực cơng việc 1.2 Mục đích nghiên cứu: Hệ phương trình mảng kiến thức quan trọng chương trình ơn thi học sinh giỏi cấp thi Đại học sau Để đáp nhu cầu học tập học sinh tơi mạnh dạn cung cấp thêm phương pháp kỹ giải hệ phương trình Để em có cách nhìn tồn diện dạng tốn Cho nên thân mạnh dạn tìm tịi nghiên cứu đưa “Một số phương pháp giải hệ phương trình cho học sinh giỏi lớp trường THCS Đông Cương” nhằm đáp ứng tốt bền vững q trình ơn thi học sinh giỏi cấp 1.3 Đối tượng nghiên cứu: Một số phương pháp giải hệ phương trình Những tốn cụ thể bao gồm phân tích lời giải Các tập tự luyện 1.4 Phương pháp nghiên cứu: Giáo viên đưa tập cụ thể với học sinh phân tích, định hướng thuộc dạng phương pháp giải dạng tìm tịi lời giải phân tích lời giải vận dụng vào giải tương tự Định hướng học sinh tham khảo thêm tài liệu liên quan, hướng dẫn cách học nhà, cách khai thác nguồn tài liệu, rèn luyện tính tự học NỘI DUNG 2.1 Cơ sở lý luận: Trước phát triển mạnh mẽ kinh tế tri thức khoa học, công nghệ thông tin nay, xã hội thông tin hình thành phát triển thời kỳ đổi nước ta đặt giáo dục đào tạo trước thời thách thức Để hịa nhập tiến độ phát triển giáo dục đào tạo ln đảm nhận vai trò quan trọng việc “đào tạo nhân lực, nâng cao dân trí, bồi dưỡng nhân tài” mà Đảng, Nhà nước đề ra, “đổi giáo dục phổ thông theo Nghị số 40/2000/QH10 Quốc hội” Nhằm đáp ứng mục tiêu giáo dục toàn diện cho học sinh, đường nâng cao chất lượng học tập học sinh từ nhà trường phổ thông Là giáo viên mong muốn học sinh tiến bộ, lĩnh hội kiến thức dễ dàng, phát huy tư sáng tạo, rèn tính tự học, mơn tốn mơn học đáp ứng đầy đủ yêu cầu Việc học tốn khơng phải học SGK, khơng làm tập Thầy, Cô mà phải nghiên cứu đào sâu suy nghĩ, tìm tịi vấn đề, tổng quát hoá vấn đề rút điều bổ ích Dạng tốn giải hệ phương trình dạng tốn quan trọng mơn đại số đáp ứng yêu cầu này, tảng, làm sở để học sinh học tiếp học sau môn học khoa học tự nhiên khác, … Vấn đề đặt làm để học sinh giải toán hệ phương trình cách xác, nhanh chóng đạt hiệu cao Để thực tốt điều này, đòi hỏi giáo viên cần xây dựng cho học sinh kĩ quan sát, nhận xét, đánh giá toán, đặc biệt kĩ giải toán, kĩ vận dụng toán, tuỳ theo đối tượng học sinh, mà ta xây dựng cách giải cho phù hợp sở phương pháp học cách giải khác, để giúp học sinh học tập tốt môn Các phương pháp chủ yếu như: * Phương pháp - Cơ sở phương pháp: Ta rút ẩn (hay biểu thức) từ phương trình hệ vào phương trình cịn lại - Nhận dạng: Phương pháp thường hay sử dụng hệ có phương trình bậc ẩn * Phương pháp đưa dạng tích - Cơ sở phương pháp: Phân tích hai phương trình hệ thành tích nhân tử Đơi cần tổ hợp hai phương trình thành phương trình hệ đưa dạng tích * Phương pháp cộng đại số - Cơ sở phương pháp: Kết hợp phương trình hệ phép tốn: cộng, trừ, nhân, chia ta thu phương trình hệ mà việc giải phương trình khả thi có lợi cho bước sau - Nhận dạng: Phương pháp thường dùng cho hệ đối xứng loại II, hệ phương trình có vế trái đẳng cấp bậc k * Phương pháp đặt ẩn phụ 2 Thực trạng vấn đề nghiên cứu: Ở kỳ thi học sinh giỏi cấp, thi vào trung học phổ thơng, mơn Tốn thành phố Thanh Hóa nhiều nằm đạt kết cao số năm không tốt Đó điều mà người giáo viên đứng lớp lúc phải suy nghĩ, băn khoăn, trăn trở, tìm hiểu nguyên nhân, lý kết không bền vững Để chất lượng đội tuyển bền vững thân thiết nghĩ chương trình dạy học phần quan trọng trình dạy học Trong phần kiến thức “Giải hệ phương trình” năm có Trong q trình dạy học bồi dưỡng cho em, giáo viên thường gặp dạng hướng dẫn dạng mà khơng theo dạng tổng quát Hầu em lúng túng chưa có cách giải tổng quát hay chưa có kỹ thành thạo gặp dạng hệ phương trình Vì việc nhận dạng khái qt hóa cách giải số hệ phương trình việc làm thiết thực cấp bách Để đánh giá khả giải tốn có phương án, phương pháp truyền đạt đến học sinh Tôi tiến hành kiểm tra em đội tuyển học sinh giỏi dự thi cấp thành phố năm học .với thời gian làm 30 phút Đề bài: x y xy Bài (5đ): Giải hệ phương trình: 2 x y xy x 2 y ( x y ) Bài (5đ): Giải hệ phương trình: y (2 x y ) x Kết cụ thể: Điểm Điểm 5-6 Điểm 7-8 Điểm 9-10 SL % SL % SL % SL % 16,7 33,3 33,3 16,7 Qua kiểm tra thấy học sinh đội tuyển Tốn thức Nhưng chất lượng làm khơng cao Nếu làm lập luận thiếu chặt chẽ; từ tơi phân dạng để học sinh dễ tiếp thu Trong buổi học thông qua tình có vấn đề tập đưa ra, người thầy phải hướng dẫn học sinh khai thác, mở rộng tốn, biết nhìn .. .trình cho học sinh giỏi lớp trường THCS Đơng Cương” nhằm đáp ứng tốt bền vững trình ôn thi học sinh giỏi cấp 1.3 Đối tượng nghiên cứu: Một số phương pháp giải hệ phương trình Những... hai phương trình thành phương trình hệ đưa dạng tích * Phương pháp cộng đại số - Cơ sở phương pháp: Kết hợp phương trình hệ phép toán: cộng, trừ, nhân, chia ta thu phương trình hệ mà việc giải phương. .. từ phương trình hệ vào phương trình cịn lại - Nhận dạng: Phương pháp thường hay sử dụng hệ có phương trình bậc ẩn * Phương pháp đưa dạng tích - Cơ sở phương pháp: Phân tích hai phương trình hệ