1 Phương trình bậc nhất một ẩn là gì? Phương trình dạng ax + b = 0, với a và b là hai số đã cho và a 0, được gọi là phương trình bậc nhất một ẩn 2 Hai quy tắc biến đổi phương trình bậc nhất một ẩn a)[.]
1 Phương trình bậc ẩn gì? Phương trình dạng ax + b = 0, với a b hai số cho a 0, gọi phương trình bậc ẩn Hai quy tắc biến đổi phương trình bậc ẩn a) Quy tắc chuyển vế Trong phương trình, ta chuyển hạng tử từ vế sang vế đổi dấu hạng tử b) Quy tắc nhân với số – Trong phương trình, ta nhân hai vế với số khác – Trong phương trình, ta chia hai vế cho số khác II HAI QUY TẮC BIẾN ĐỔI BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Bất phương trình bậc ẩn gì? Bất phương trình dạng ax + b < (hoặc ax + b > 0, ax + b 0, ax + b 0) a b hai số cho, a 0, gọi bất phương trình bậc ẩn Hai quy tắc biến đổi bất phương trình bậc ẩn a) Quy tắc chuyển vế Khi chuyển vế hạng tử bất phương trình từ vế sang vế ta phải đổi dấu hạng tử b) Quy tắc nhân với số Khi nhân hai vế bất phương trình với số khác 0, ta phải: – Giữ nguyên chiều bất phương trình số dương – Đổi chiều bất phương trình số âm III CÁC DẠNG BÀI TẬP VỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Bài 1: Giải phương trình sau: a) 3x – = 2x – b) 7 – 2x = 22 – 3x c) x – 12 + 4x = 25 + 2x – d) 2( x + ) = 2( x – ) + 14 e) 2x – + 2(2 – x) = * Lời giải: a) 3x – = 2x – 3 ⇔ 3x – 2x = -3 + 2 ⇔ x = -1; Phương trình có tập nghiệp S = {-1} b) 7 – 2x = 22 – 3x ⇔ -2x + 3x = 22 – 7 ⇔ x = 15 ; Phương trình có tập nghiệp S = {15} c) x – 12 + 4x = 25 + 2x – 1 ⇔ x + 4x – 2x = 25 – +12 ⇔ 3x = 36 ⇔ x =12 ; Phương trình có tập nghiệp S = {12} d) 2( x + ) = 2( x – ) + 14 ⇔ 2x – 2x = -8 + 14 – 6 ⇔ 0x = Phương trình có vơ số nghiệm: S = R e) 2x – + 2(2 – x) = 1 ⇔ 2x – + – 2x = 1 ⇔ 2x – 2x = + – 4 ⇔ 0x = -2 Phương trình vơ nghiệm: S = Ø Bài 2: Giải biện luận phương trình: 2(mx + 5) + (x + m) = m (*) ° Hướng dẫn giải: – Đây dạng phương trình có chứa tham số, cách giải sau: Thu gọn dạng ax + b = ax = -b, ta phải biện luận trường hợp: Trường hợp a ≠ 0: phương trình có nghiệm x = -b/a _ Trường hợp a = 0, ta xét tiếp: + Nếu b ≠ 0, phương trình vô nghiệm + Nếu b = 0, PT vô số nghiệm – PT (*) ⇔ 2mx + 10 + 5x + 5m = m ⇔ (2m + 5)x = m – 5m -10 ⇔ (2m + 5)x = -2(2m +5 ) – Biện luận: + Nếu 2m + ≠ 0 ⇔ m ≠ -5/2 ⇒ phương trình có nghiệm x = -2; + Nếu 2m + = 0 ⇔ m = -5/2 ⇒ phương trình có dạng 0x = 0 ⇒ Phương trình có vơ số nghiệm – Kết luận: Với m ≠ -5/2 phương trình có tập nghiệm S = {-2} Với m = -5/2 phương trình có tập nghiệp S = R Bài 3: Giải phương trình sau: a) (3x – 2)(4x + 5) = b) 2x(x – 3) + 5(x – 3) = * Lời giải: a) (3x – 2)(4x + 5) = ⇔ 3x – = 4x + = ⇔ 3x = 4x = -5 ⇔ x = 3/2 x = -5/4 Vậy tập nghiệp S = {3/2; -5/4} b) 2x(x – 3) + 5(x – 3) = ⇔ (x – 3)(2x + 5) = ⇔ x – = 2x + = ⇔ x = 2x = -5 ⇔ x = x = -5/2 Vậy tập nghiệp S = {3; -5/2} Bài 4: Giải phương trình sau: a) (x+3)/x = (5x+3)/(5x-1) (*) b) (**) * Lời giải: a) (x+3)/x = (5x+3)/(5x-1) – ĐKXĐ PT: x ≠ và 5x-1 ≠ 0 ⇔ x ≠ x ≠ 1/5; PT (*) ⇔ ⇔ (5x – 1)(x + 3) = x(5x – 3) ⇔ 5×2 + 14x – = 5×2 + 3x ⇔ 5×2 + 14x – 5×2 – 3x = ⇔ 11x = 3 ⇔ x = 3/11 (thoả mã ĐKXĐ) Vậy phương trình có tập nghiệm S = {3/11} b) – ĐKXĐ PT: x – 1 ≠ x + 1 ≠ 0 ⇒ x ≠ x ≠ -1 Quy đồng khử mẫu ta được: PT (**) ⇔ (x + 1)2 – (x – 1)2 = 3x(x – 1)(x+1 – x + 1) ⇔ x2 + 2x + – x2 + 2x – = 6x(x – 1) ⇔ 4x = 6×2 – 6x ⇔ 6×2 – 10x = ⇔ 2x(3x – 5) = ⇔ 2x = 3x – = ⇔ x = x = 5/3 (thoả ĐKXĐ) Vậy tập nghiệp S = {0; 5/3} Bài 5: Mẫu số phân số lớn tử số Nếu tăng tử mẫu thêm hai đơn vị được phân số 1/2. Tìm phân số cho * Lời giải: Gọi tử phân số cho x (x ≠ 0) mẫu phân số x + Tăng tử thêm đơn vị ta tử là: x + Tăng mẫu thêm đơn vị mẫu là: x + + = x +5 Theo ta có phương trình: (ĐKXĐ: x ≠ -5) ⇒ 2( x + ) = x + ⇔ 2x – x = – ⇔ x = (thảo điều kiện); phân số cho 1/4 Bài 6: Đường sông từ A đến B ngắn đường 10km, Ca nô từ A đến B 2h20′,ô tô hết 2h Vận tốc ca nô nhỏ vận tốc ô tô 17km/h Tính vận tốc ca nơ tơ? * Lời giải: Gọi vận tốc ca nô x km/h (x>0). Vận tốc ô tô là: x+17 (km/h) Quãng đường ca nô là: (10/3)x (km) Quãng đường ô tô là: 2(x+17) (km) Vì đường sông ngắn đường 10km nên ta có phương trình: 2(x+17) – (10/3)x = 10 Giải phương trình ta x = 18.(thỏa mãn đk) Vậy vận tốc ca nô 18 (km/h) Vận tốc ô tô là: 18 + 17 = 35 (km/h) Bài 7: Một tàu thủy chạy khúc sông dài 80km, lẫn 8h20′ Tính vận tốc tàu thủy nước yên lặng? Biết vận tốc dòng nước 4km/h * Hướng dẫn lời giải: – Với toán chuyển động nước, em cần nhớ: vxuôi = vthực + vnước vngược = vthực – vnước – Gọi vận tốc tàu nước yên lặng x (km/h) Điều kiện (x>0) – Vận tốc tàu xi dịng là: x + (km/h) – Vận tốc tàu ngược dòng là: x – (km/h) Thời gian tàu xi dịng là: 80/(x+4) (h) Thời gian tàu xi dịng là: 80/(x-4) (h) – Vì thời gian lẫn 8h20′ = 25/3 (h) nên ta có phương trình: – Giải phương trình x1 = -5/4 (loại) x2 = 20 (thoả) Vậy vận tốc tàu nước yên lặng là: 20 (km/h) Bài 8: Một Ôtô từ Lạng Sơn đến Hà nội Sau 43km dừng lại 40 phút, để Hà nội kịp quy định, Ơtơ phải với vận tốc 1,2 vận tốc cũ Tính vận tốc trước biết quãng đường Hà nội- Lạng sơn dài 163km * Hướng dẫn lời giải: – Dạng chuyển động có nghỉ ngang đường, em cần nhớ: tdự định =tđi + tnghỉ Quãng đường dự định đi= tổng quãng đường – Gọi vận tốc lúc đầu ô tô x (km/h) (Điều kiện: x>0) Vận tốc lúc sau 1,2x (km/h) – Thời gian quãng đường đầu là:163/x (h) – Thời gian quãng đường sau là: 100/x (h) – Theo ta có phương trình: – Giải phương trình ta x = 30 (thoả ĐK) Vậy vận tốc lúc đầu ô tơ 30 km/h Bài 9: Hai Ơ tơ khởi hành từ hai bến cách 175km để gặp Xe1 sớm xe 1h30′ với vận tốc 30kn/h Vận tốc xe 35km/h Hỏi sau hai xe gặp nhau? * Hướng dẫn lời giải: – Dạng chuyển động ngược chiều, em cần nhớ: Hai chuyển động để gặp thì: S1 + S2 = S Hai chuyển động để gặp nhau: t1 = t2 (không kể thời gian sớm) – Gọi thời gian xe x (h) (ĐK:x > 0) – Thời gian xe x + 3/2 (h) – Quãng đường xe là: 35x (km) – Quãng đường xe là: 30(x + 3/2) (km) – Vì bến cách 175 km nên ta có phương trình: – Giải phương trình được: x = (thoả ĐK) Vậy sau giờ 2 xe gặp Bài 10: Một thuyền khởi hành từ bến sơng A, sau 5h20′ ca nô chạy từ bến sông A đuổi theo gặp thuyền điểm cách A 20km Hỏi vận tốc thuyền? biết ca nô chạy nhanh thuyền 12km/h * Hướng dẫn lời giải: – Dạng chuyển động chiều, em cần nhớ: + Quãng đường mà hai chuyển động để gặp + Cùng khởi hành: tc/đ chậm – tc/đ nhanh = tnghỉ (tđến sớm) + Xuất phát trước sau: tc/đ trước – tc/đ sau = tđi sau; tc/đ sau + tđi sau + tđến sớm = tc/đ trước – Gọi vận tốc thuyền x (km/h) – Vận tốc ca nô x = 12 (km/h) – Thời gian thuyền là: 20/x – Thời gian ca nơ là: 20/(x+12) – Vì ca nơ khởi hành sau thuyền 5h20′ =16/3 (h) đuổi kịp thuyền nên ta có phương trình: – Giải phương trình x1 = -15 (loại); x2 = (thoả) Vậy vận tốc thuyền km/h ...– Giữ ngun chiều bất phương trình số dương – Đổi chiều bất phương trình số âm III CÁC DẠNG BÀI TẬP VỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Bài 1: Giải phương trình sau: a) 3x –... 2m + ≠ 0 ⇔ m ≠ -5/2 ⇒ phương trình có nghiệm x = -2; + Nếu 2m + = 0 ⇔ m = -5/2 ⇒ phương trình? ?có dạng 0x = 0 ⇒ Phương trình có vơ số nghiệm – Kết luận: Với m ≠ -5/2 phương trình có tập nghiệm S... 1 ⇔ 2x – 2x = + – 4 ⇔ 0x = -2 Phương trình vơ nghiệm: S = Ø Bài 2: Giải biện luận phương trình: 2(mx + 5) + (x + m) = m (*) ° Hướng dẫn giải: – Đây dạng phương trình có chứa tham số, cách giải