Sự tương giao đường thẳng và đường tròn
Trang 1•
•
Bai toan vi su' tuong giao gii i a duong
thdng va duong t r im thuang x udt hien
trong cdc di thi tuyen sinh vao Dai h9C , Cao
ac i ng va c o th i tcng dun g d i gia i mot s6 bai
todn dai s6
I LiTHUYET
Cho dirong trim (C) co tam 1, ban kinh R va
dirong thang L'l. D~t h=d(I, L'l).
TrU'Ong hQ1>h = R. L 'l la tiep tuyen cua
dirong trim (C)
I
Hinh 1
N~u tir di~m M ngoai (C) ke hai tiep tuyen
MA v a ME d~n duong trim (C) (h 1) thi
• L 'lM A l = L 'lMEl, 1M2 =R 2+AM - =R 2+BM2.
• A 11M tai trung di~m H cua AB.
• SI AMB=2SI A M=Al.AM =AH.IM.
·:·TrU'Ong hQ1>h < R. L'l dt (C) tai hai diem
phan biet P va Q(h 2
Hinh 2
GQi H la trung diem cua doan PQ thi
• Tam giac IPQ can tai 1, SI PQ= ~ R 2sinPIQ
( G V THPT T hanh N han , TP H 6 C hi Minh )
• IH l PQ , R 2 =IH 2 +HP 2 =I H 2 +P Q 2
4
• DQ dai doan PQ IOn nhelt khi L 'l di qua tam
1 cua dirong tron (C)
.: Truong hQ'Ph>R.L 'l va (C) khong codi~m
chung
• Tir mot diem belt ki tren L 'l luon ke duoc hai
• Lely diem K n~m tren duong tron (C) thi
h - R ~ d(K , L 'l) ~ h+R
II cAc THi DV MINH HQA : Truo g hQ1>L' lti~p xuc VOl (C)
*Thi du 1.Cho duong tron (C): xl +Y =2
n«phuong trinh tii p tuyen L 'l cua (C) sao cho L ' l ct it cac tia Ox, Oy fdn luot tai A , B va dien tich tam giac OAB nho nhat.
Lai giiii Duong tron (C) co tam trung g c toa
dQ0va ban kinh R = fi
Ti~p tuyen L 'l qua A(a ; O) , B(O ; b)(a > O , b > O )
coP'T x + y =l<=>bx+a y -ab=O
a b
Ta co d( O ,L 'l) =R d , J labl = fi
a 2 +b 2
<=>ab =~2(a2 +b2) ~ 2M => ab ~ 4, nen
S OAB= !OA.GB =!ab ~ 2 Dang thirc xay ra
khi a =b=2 V~yPT L 'l: x + y -2=O D
*Thi dl}2.(Ciiu VI.a.! Khbi B 2009)
Cho duong tron (C): (x - 2)2 +y2 = ± va cac
5
diarng thang L ' l 1:X-y=O, L ' l 2:X-7y=O Xac dinh toa d(J tam K va tinh ban kinh cua duong iron (Cl), biit rang duang iron (Cl)
tiip xuc vai cac duong thdng L 'll , L 'l 2 va tam
K thuoc duang iron(C)
www.VNMATH.com
Trang 2Lai giai. GQi K(a;b)E(C)~(a-2)2 +b2=~;
( C]) ti~p XUC fl],fl2 ~ la ~bl = la ~bl
"\12 5 2
Tir'd'0ta co, {5(a-2) 2 +5b 2 =4
5la-bl =la-7bl·
Gifti M nay ta duoc (a; b) = ( ~; ~ ). Ban
kinh dirong trim (C]) la R =la ~bl =2J2 0
"\12 5
*Thi d1}.3 (e l lu V.a.l Kh8i B 2006)
Cho duong trim (C): x2 +y2 -2x-6y+6=0
va diim M(-3; 1) G9i TJ va T2 fa cac tiep
diim cua cac tiip tuyen ke tit M din (C)
Viit phuong trinh duong thdng TJT2.
Liri giai Duong tron (C) c6 tam 1(1;3) ban
kinh R =2,IM = 215 >R nen Mnfun ngoai (C)
Ta c6 MI; =MI; =.J MJ2 - R 2 =4 nen T ; ,T 2
thuoc dirong tron (c,) c6 tam M va ban kinh
R'=4.
PT dirong tron (C') la r + y +6x-2 y -6=0.
Tir d6 (C) ciit (C,) tai hai di~m T;, T
Xet he PT {X2+y2 - 2x - 6 y +6=0
~ 2x+ y-3 =0 (1) Do T; ,T2 la giao diem
T;, T thoa man d~ng thirc (1)
Do d6 PT duong thang T;T 2 la 2x+y-3=0.0
v a di i m A(2; 1). DU'Cmg thdng d t ha y d J i di
qua A ci it (C) tai hai di i m T ] va hHai tiep
tu ye n c ua (C) tai hai di i m T] va T 2 c dt nhau
tai di i m M Tim qu y ti c h c ua di i m M
Liri giai: Duong tron (C) c6 tam 1(1; 2) ban
kinh R = 2, lA = J2 < R nen di~m A (ytrong
duong tron (C), suy ra dirong thang d qua A
luon ciit (C) tai hai di~m T] va T 2
Gift su M ( xo; Yo ), PT dirong tron (C') tam
M va ban kinh R' =MJj =.JMJ 2 _R 2 la
x2 +y2 - 2xox- 2yoY +2xo +4y o -1 =O Tuong tir Till du 3, ta tim diroc PT T;T 2 :
(2xo - 2) x + (2yo -4)y - 2 x o -4 yo +2=O
Do duong thang T;T 2 di qua A (2; 1) nen (2xo -2).2+(2Yo-4).1-2xo -4 Yo +2=0
~ Xo - Yo - 3=0 (2)
Di~m M c6 toa dQ thoa man (2), suy ra quy tich di~m Mia dirong thang x - y - 3= 0.0
va duong thiing fl : x +y - 6 =O Gia su Mfa diim thuoc duong thang fl
a) Chung minh rang tit M luon ke duac hai
tiip tuyen MJj , MT2 din (C) (T; va T fa hai tiip di i m) va duong thdng T;T 2 luon di qua mot diim c ddinh.
~ A dai b ~ 815
ao ai ang .
c) Tim vi tri di i m M d i di e n ti c h tu giac OT;MT 2 dat gia tri nho nhdt
Liri gidi: a) Duong tron (C) c6 tam 0(0 ; 0) va
R =2, ME fl, d(O,fl) =3J2 >R nen Mn~m
ngoai, duOn~ tr~n Vi vay illM luon ke diroc
hai tiep tuyen den duong tron (C)
Do Met: nen M(t,6-tj, Me =MI2 =.JMJ2 _R2
Tuong tu Thi du 3, ta c6 T;,T2 I~ giao diem
cua dirong tron (C)va dirong tron (C') (C' c6
tam M va ban kinh R' =MJj )
Tir d6 ta c6 PT cua duong thang T;T 2 la
tx+(6-t)y-4=0.
Tir day suy ra dirong thang T;T 2 luon di qua d·rem; co; dinh. H(2 2) 3 ; 3
b) Tac6 S O T lM 7 =l T;T2 GM=0T;.MJj
2
= R JM0 2 - R 2 Suy ra
www.VNMATH.com
Trang 34 J 5 O ' M =2 J M0 2 - 4=> OM =2J5
5
V~y co hai diem M ,(4;2) va M 2(2;4)
c) Ta co S 01\ M =OT j M Y ; =R JM0 2 - R 2
= 2 J M0 2 - 4 Tir do S 0 \MI2 nho nhat khi
dQ dai MO nho nhat Khi do diem M la hinh
chien cua 0 len ~, suy ra M(3 ; 3) 0
*Thi dl}6 (Ciiu V a 2 Kh6i D 200 7 )
Cho duong trim (C): (x_l)2 +(y+2)2 =9
va dut mg t h dng t : : 3x - 4y +m =O Tim m
di tre n t :.co duy nhdt mot diim P ma tir do
co thi ke duac hai tiep tuyen PA, P B d~n
duong trim (C) (A, B la cac tiep diim) sao
cho tam giac P AB d~u.
Loi gidi Duong trim (C) co tam I(1 ; -2) va
ban kinh R = 3 Tam giac PAB deu nen IP =
21A = 2R = 6 nen P thuoc duong trim (c,)
tam Ib n kinh R ' =6
Tren ~ co duy nhat di€m P thoa man yeu d
bai toan ¢ > d ( J , ~ ) =6=> m=19 ; m =-41.0
phan bi~t
ill duong trim (C) : (x_l)2 +(y - 2)2 =4
a) Ti m m di ~ cat (C) tai h i diim p dn
biet A va B sao cho d (J dai doan t hang AB
ngan nhdt.
b) Tim quy tich trung diem H cua doan
thang A B k hi duong t h ang ~ t h ay d6i.
Lai giai a) Duong trim (C) co tam I(1 ; 2) va
ban kinh R = 2 Ta thfty ~ luon di qua di€m
M(2; 1 ) va 1 M = J2 <R nen M atrong (C),
su ra ~ luon c~t (C) tai hai diem phan biet
A, B.
d ( J , ~) =IH DQ dai doan AB ngan nhat khi
IH dai nhat Do IH -.l A B va M E A B nen
IH ~ 1M = IHm ax =1M Khi ~ L 1M ,suy ra
m=-1 V~y PT ~: x - y-1=0
b) Di€m H la trung di€m cua doan AB nen
IH L HM Do do H nam tren duong trim
(e') co dirong kinh la 1M
PT dirong trim (e ' ): ( x -~ J + ~ -~=~.OJ
x2+4 x +y2 - 5=O Tim gia tri Ian nhdt, va
gia tri nho nhdt cua biiu thiec T =3x +4y.
Lai giai Tren mat phang toa dQ O xy, Ifty
di€m M(X , Y)E~:3x+4y-T=0.
Hai s6 x ,y thoa man x 2 +4 x +y2 - 5= 0
nen M (X,Y )E(C):X 2 +4 x + y2 -5=0 la dirong trontam 1(-2;0) vaban kinh R =3
MIa diem chung cua (e) va t:. ¢::>d(l , ~) ~R
¢:: > 16+TI ~15¢ > -21 ~T <9 D~ng thirc xay
ra khi ~ Ia tiep tuyen cua (C)
Nhtr v~y max(T ) =9 khi
{
X2 +4x+ y 2 -5 =0¢ : :> {x =-~
y
=-5
rnin(T) =-21 khi
{
X 2 +4x+ y 2 -5 ~ 0¢ >{x = _1:
3 x +4 y +21=0 y =-g D
5
Cho Quang tron (C): X2+y2+4x+ 4 y+6= ; 0
va duong t h ang ~: x+my - 2m +3=O G9i I
la tam duong tron (C) Tim m d~ ~ dt (C)
tai hai di~m ph an biet A, B sao cho dien tich tam giac lA B Ian nhdt.
Lili giiii Duong tron (C)co tam 1(-2;-2) va
R = J2 Ta co SlA =-IA IB.sinAIB~- =1
loAN HOC • • • !'••••••••••••••••••••••••••••••••••••••••••••••••••• ~SIln / sli f 5
www.VNMATH.com
Trang 4Yay SlAB IOn nh~t khi IA1JB=>d(I,tl) = ~ =1
1-2-2m-2m+31 8
Jl +nr- 15
*Thi du 10.( Cau VI h 1 KhaiD 2 0JI )
C h di i m A (O ;I ) va duang iron (C):
X2+y2 - 2 x +4 y - 5=Ọ n« phuon g t r i nh
duong thdng tl e ftt (C) tai hai di i m M v a N
s aG c ho tam gia c A MN vuon g c an tai Ạ
Loi giaị Duong trim (C) co tam 1(1;-2)
veR = J1O; IA = (0;-2). Ta co IM= IN va
AM = AN =>AI 1 MN nen PT tl: y =m
G9i hai giao diem M ( Xl;m), N ( X2;m).
Khi do Xl va X2 la nghiem cua PT
De PT (3) co hai nghiem Xl;X2 phan biet thi
AM 1 AN ¢ > AM.AN =0
¢::> (Xl-1)(X2-1) +m 2 = 0
¢::> XlX2 - (XI + X2) + 1+ m? =0
Ap dung dinh li Viete d6i voi PT (3), SUY ra
2m2 +4m - 6 = 0 ¢::> m = - 3 hoac m = 1 ,
thoa man (4)
V~yphuongtrinh tl:y = 1 hoac tl:y =-3.0
*Thi du 11.(Cau VI ạ1 Khai A 2010)
C ho hai duong thdng d,: 13 x +y =0 va
d 2 : 1 3 x - y =Ọ G9 i (1) f a duang tron ti p
x u c vai d l tai A, e f t d 2 tai ha i diem B , Cs a G
c ho tam giac ABC vuong tai B. n«phuong
trinh cua (1), bi ~ t rdng tam gia c ABC c o di e n
, h b ~ 13 ' d' ;: A i h ' h ~~ d
ti ang 2 v a iem c o oan a uon g.
ungidị Ta co A E d, => Ăa ;-aJ3) (a> 0).
Tir AC ạ=>AC: x-13y-4a =0;
C=d 2 (\ AC => c( -2a; - 2J3a);
BA d 2 =>BA:x+13y+2a=0;
B~d, nBA=> +~;_ ã}
Ta co SABC =! BẠBC = 13 ¢::>13ạ3a =13
=>a= ~ =>Ẵ;-I} C(~;-2}
Duong tron (1) co tam 1(- 2~ ;-%) (Ila
trung diem cua A C) va ban kinh R =IA = 1
Tir do PT cua duong tron (1) la
.: Truimg hQ1>t khong dt (C)
*Thi du 12.C h o duong trim (C):r+y2-2x
-2y -7 =0 va duong thdng tl : 3x+4y+13=0
Tim gia tri ta n n dt va gia tri nho nhdt cua
duon g thdn g t
Loi giiiị Duong tron (C) co tam 1(1; 1)va
ban kinh R = 3; d(I,tl)=4>R nen dirong thang tl khong d.tduong tron (C)
Ta vĩt PT tiep tuyen cua (C) va song song voi tl Co hai tiep tuyen la tll:3x+4y+8=0
voi tiep diem M,( - 4; -7) va ~ : 3x+4y- 22=0
55'
r , ~ d'~ M(1417)
VÓI tiep tern 2 5;5
Khi d6 d(tl,tll)=I,d(tl,tl2)=7. Voi diem
M thuoc (C) suy ra l=d(tl,tll):S;d(M,tl):S;d(tl,tl2)=7.
Nhu vay
max d(M, tl)=7 khi M =-M2 5;5
ToAN HOC •••••.••••• ~ ••••.•.••••••••••• , A ~ S tVl l sii f5
www.VNMATH.com
Trang 5Nh~n xet.Hai diem MJ va M2 la giao diem
cua (C) va dirong thang d qua tam I, vuong
goc voi f::
maxd(M , f:: ) =d(I , f:: )+R ,
mind(M , f:: ) =d(I , /),.)-R
*Thi d1}13.Cho duong trim (Q:r+j-a - t4y+l = <l
va duang thdng thay d6i f:: .: 1m+y-2m-2=0
Tim m d~ khodng each nho nh6t tir di~m M th QC
(C) din duang thdng f:: dat gia tri fern nh6t.
Liri gidi: (h 3)
N
Hinh 3
Duong trim (C) co tam 1(1;-2) va R = 2
GQih la khoang each nho nhat ill M dSn f::
Ta th~y f:: luon di qua di~m N(2; 2) angoai
duong tron (C)
• Truong h9P f:: c at (C) thi h=O
• Truong h9P f:: khong clit (C)
GQi H la chan dirong vuong goc ha illI xuong
f:: A la giao diem cua doan IH va (C) thi
h=HA.
R5 rang la h dat gia tri Ian nhat khi H == N
Khi do, h = IN - R = JU -2 va luc nay
f:: 1.IN redo suy ra m = ~ 0
4
*Thi d1}14 Xet cac s6 thuc a, b, c, d thoa
Tim gia tri nho nh6t cua bi~u thuc
T= (a-c) 2 +(b-dr
Lai giiii. Xet diem A (a; b) thuoc duong tron
(C): x 2 +y2-2x+2y-23=0 co tam 1(1;-1)
va R = 5; di~m B (c ;d) thuoc duong thang
f:: :3x-4 y +23=0 thi T= (a- c/ + ( b -d ) 2 =AIJ 2.
Ta co d(I,f:: )=6> R nen f:: khong c~t (C)
T dat gia tri nho nh~t khi doan A B ngan nhat.
Theo Thi du lZita co minA B , = d (I ,f :: ) -R=l Khi do B la hinh chieu cua I len f:: , A leigiao
diem cua doan thang IB va duong tron (C)
minT = 1 0
BAIT~P
1 Cho duong tron (C): X2+y2 - 6x -10 =O Duong thang d qua diem A dt (C) tai hai di~mM, N
a) ViSt phuong trinh duong th~ngd trong cac
tnrong hQ'P doan MN nho nhat, Ian nhat
b) Tim quy tich trung diem H cua doan MN.
A , { 1m+3 y+ m+3=0
2. Cho h~ phirong tnnh X2+y2_ 2x-15 =0
(m la tham so)
a) Chung minh h~ da cho co hai nghiem phan biet,
b) GQi (Xl ; Yl ) va ( X2 ; Y2 ) la hai nghiem cua
he Tim gia tri Ian nh~t, gia tri nho nh~t cua
bi~u tlnrc F =(Xl - X2 ) 2 +( Yl - Y2 ) 2.
3. Cho duong thang f:: X +Y+2=0 va duong tron (C): X2-ay 2 - 4x - 2 Y=O GQi Ila
tam cua (C), M la d~~m thuoc dirong thang f:: Qua Mke cac tiep tuyen MA va ME dSn (C) (A,
B la cac tiSp diem) Tim toa dQ diem M , biSt rang illgiac MAlB co dien tich bang 10
4.Cho duong tron (C):X2+y2 -8 x +6 y +21=0
va dirong thang d: X +Y-1 =0 Xac dinh toa
dQ cac dinh hinh vuong A BCD ngoai tiep duong tron (C), biSt rang diem A nam tren d
5. Cho dirong tron ( C ):r+y- 4 x-6y- 1 =O Tim toa dQ diem M thuoc duong thang :
d : 2 x - Y+3=0 sao cho MI = 2R , trong do I
la tam va RIa ban kinh cua duong tron (C)
www.VNMATH.com