Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
3,21 MB
Nội dung
VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Tốn lớp 9: CHƯƠNG 2: ĐƯỜNG TRỊN CHỦ ĐỀ 1: SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường trịn tâm O bán kính R hình gồm điểm cách điểm O khoảng R kí hiệu (O; R) hay (O) + Đường tròn qua điểm A1 , A , , A n gọi đường tròn ngoại tiếp đa giác A1A A n + Đường tròn tiếp xúc với tất cạnh đa giác A1A A n gọi đường tròn nội tiếp đa giác Những tính chất đặc biệt cần nhớ: + Trong tam giác vng trung điểm cạnh huyền tâm vịng tròn ngoại tiếp + Trong tam giác , tâm vịng trịn ngoại tiếp trọng tâm tam giác + Trong tam giác thường: Tâm vòng tròn ngoại tiếp giao điểm đường trung trực cạnh tam giác Tâm vịng trịn nội tiếp giao điểm đường phân giác tam giác PHƯƠNG PHÁP: Để chứng minh điểm A1 , A , , A n thuộc đường tròn ta chứng minh điểm A1 , A , , A n cách điểm O cho trước Ví dụ 1) Cho tam giác ABC có cạnh a AM, BN,CP đường trung tuyến Chứng minh điểm B,P, N,C thuộc đường trịn Tính bán kính đường trịn Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Vì tam giác ABC nên trung tuyến đồng thời đường cao Suy AM, BN,CP vng góc với BC, AC, AB Từ ta có tam giác BPC, BNC tam giác vuông Với BC cạnh huyền, suy MP MN MB MC Hay: Các điểm B,P, N,C thuộc đường tròn Đường kính BC a , tâm đường trịn Trung điểm M BC D 90 Gọi M, N,P,Q trung Ví dụ 2) Cho tứ giác ABCD có C điểm AB, BD, DC,CA Chứng minh điểm M, N,P,Q thuộc đường trịn Tìm tâm đường trịn Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Kéo dài AD,CB cắt điểm T tam giác TCD vng T + Do MN đường trung bình tam giác ABD nên NM / /AD + MQ đường trung bình tam giác ABC nên MQ / /BC Mặt khác AD BC MN MQ Chứng minh tương tự ta có: MN NP, NP PQ Suy MNPQ hình chữ nhật Hay điểm M, N,P,Q thuộc đường trịn có tâm giao điểm O hai đường chéo NQ,MP Ví dụ 3) Cho tam giác ABC cân A nội tiếp đường tròn (O) Gọi M trung điểm AC G trọng tâm tam giác ABM Gọi Q giao điểm BM GO Xác định tâm đường tròn ngoại tiếp tam giác BGQ Giải: Vì tam giác ABC cân A nên tâm O vòng tròn ngoại tiếp tam giác nằm đường trung trực BC Gọi K giao điểm AO BM Dưng đường trung tuyến MN, BP tam giác ABM cắt trọng tâm G Do MN / /BC MN AO Gọi K giao điểm BM AO K trọng tâm tam giác ABC suy GK / /AC VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Mặt khác ta có OM AC suy GK OM hay K trực tâm tam giác OMG MK OG Như tam giác BQG vuông Q Do tâm vịng trịn ngoại tiếp tam giác GQB trung điểm I BG B 90 BC 2AD 2a, Gọi Ví dụ 4) Cho hình thang vng ABCD có A H hình chiếu vng góc B lên AC M trung điểm HC Tìm tâm bán kính đường trịn ngoại tiếp tam giác BDM Giải: Gọi N trung điểm BH MN đường trung bình tam giác HBC suy MN AB , mặt khác BH AM N trực tâm tam giác ABM suy AN BM Do MN / / BC MN / / AD nên ADMN hình bình hành suy AN / /DM Từ ta có: DM BM hay tam giác DBM vng M nên tâm vịng trịn ngoại tiếp tam giác DBM trung điểm O BD Ta có R MO BD 1 a AB AD 4a a 2 Bài toán tương tự cho học sinh thử sức Cho hình chữ nhật ABCD , kẻ BH vng góc với AC Trên AC,CD ta lấy điểm M, N cho AM DN Chứng minh điểm M, B,C, N nằm AH DC đường tròn VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí 90 , chứng minh BMN 90 Gợi ý: BCN Ví dụ 5).Cho lục giác ABCDEF tâm O Gọi M, N trung điểm CD, DE AM cắt BN I Chứng minh điểm M,I,O, N, D nằm đường tròn Giải: Do ABCDEF lục giác nên OM CD,ON DE M, N,C, D nằm đường trịn đường kính OD Vì tam giác OBN OAM nên điểm O cách AM, BN suy OI phân giác góc AIN OH AM Kẻ DH1 2OH (Do OH đường trung bình tam giác DH1 AM DAH1 OK BN OK JO Kẻ với J AD NB ) DK 2OK (Do DK BN DK JD Do OK OH DH DK suy D cách AM, BN hay ID phân OID 90 Vậy điểm M,I,O, N, D nằm giác ngồi AIN đường trịn đường kính OD VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ 6) Cho hình vng ABCD Gọi M trung điểm BC, N điểm thuộc đường chéo AC cho AN AC Chứng minh điểm M, N,C, D nằm đường tròn Giải: 90 nên để chứng minh điểm Ta thấy tứ giác MCDN có MCD 90 M, N,C, D nằm đường tròn ta chứng minh MND Cách 1: Kẻ đường thẳng qua N song song với AB cắt BC, AD E,F Xét 1 4 DNF,MNE NDF MNE DNF 90 suy NEM DFN NME hai tam giác vng NEM DFN EM NF AB,EN DF AB từ Hay tam giác MND vng N Suy điểm M, N,C, D nằm đường trịn đường kính MD Cách 2: Gọi K trung điểm ID với I giao điểm hai đường chéo Dễ thấy MCKN hình bình hành nên suy CK / /MN Mặt khác NK CD, DK CN K trực tâm tam giác CDN CK ND MN ND VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ 7) Trong tam giác ABC gọi M, N,P trung điểm AB, BC,CA A1 , B1 ,C1 chân đường cao hạ từ đỉnh A, B,C đến cạnh đối diện A , B2 ,C2 trung điểm HA,HB,HC Khi điểm M, N,P, A , B1 ,C1 , A , B ,C nằm đường tròn gọi đường tròn Ơ le tam giác Giải: 2 suy MNC B hình chữ nhật, tương tự ta có MPB2 C , NPA B2 hình a) Thật ta có MN A 2C AC, MA NC BH mà BH AC chữ nhật nên điểm M, N,P, A , B1 ,C1 , A , B ,C nằm đường trịn có tâm trung điểm đường chéo hình chữ nhật Từ ta suy tâm đường tròn Ơ le trung điểm Q HI Ví dụ 8) Cho tam giác ABC nội tiếp đường trịn (O) AD đường kính (O) M trung điểm BC,H trực tâm tam giác Gọi X, Y, Z hình chiếu vng góc điểm D lên HB,HC, BC Chứng minh điểm X, Y, Z,M thuộc đường tròn VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Giải: Phân tích: M trung điểm BC M trung điểm HD (Bài toán quen thuộc) X, Y, Z hình chiếu vng góc điểm D lên HB,HC, BC kết hợp tính chất điểm M làm ta liên tưởng đến đường tròn Ơ le tam giác: Từ sở ta có lời giải sau: + Giả sử HB cắt DY I,HC cắt DX K , J trung điểm IK Ta dễ chứng minh BHCD hình bình hành suy hai đường chéo HD, BC cắt trung điểm M đường Vì DX HI, DI HC suy K trực tâm tam giác IHD nên KHI HCD (chú ý HI / /CD) CHD KID (cùng phụ với góc KDI ) Từ suy KID CHD HDI + Mặt khác CM, DJ hai trung tuyến tương ứng tam giác CHD HCM Từ suy DJ BC KID , ta có DIJ CHM JDI Z hay Z thuộc đường tròn đường kính MJ Theo tốn ví dụ , đường trịn đường kính MJ đường trịn Ơ le tam giác IHD Từ ta có: X, Y, Z,M nằm đường trịn đường kính MJ Đó điều phải chứng minh VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ 9) Cho tam giác ABC có trực tâm H Lấy điểm M, N thuộc tia BC cho MN BC M nằm B,C Gọi D,E hình chiếu vng góc M, N lên AC, AB Chứng minh cácđiểm A, D,E,H thuộc đường tròn Giải: Giả sử MD cắt NE K Ta có HB / /MK vng góc với AC suy KMN (góc đồng vị) HBC KNM kết hợp với giả thiết BC MN Tương tự ta có HCB BHC KMN S BHC S KMN HK / /BC Mặt khác ta có BC HA nên HK HA hay H thuộc đường trịn đường trịn đường kính AK Dễ thấy E, D (AK) nên cácđiểm A, D,E,H thuộc đường trịn Ví dụ 10) Cho tam giác ABC P điểm PA,PB,PC cắt đường tròn ngoại tiếp tam giác ABC A1 , B1 ,C1 Gọi A , B2 ,C2 điểm đối xứng với A1 , B1 ,C1 qua trung điểm BC,CA, AB Chứng minh rằng: A , B2 ,C2 trực tâm H tam giác ABC thuộc đường tròn Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí + Gọi G trọng tâm tam giác ABC ,theo toán quen thuộc đường trịn Ơ le G thuộc đoạn OH OG OH Gọi A , B3 ,C3 trung điểm BC,CA, AB Theo giả thiết A trung điểm A1A , G trọng tâm tam giác ABC AA1A Gọi A , B4 ,C trung điểm AA1 , BB1 ,CC1 Vì G trọng tâm tam giác AA1A nên GA GA Gọi K trung điểm OP AA1 dây cung (O) OA AA A thuộc đường tròn tâm K đường kính OP hay KA OP (2) + Gọi I điểm thuộc tia đối GK cho GK (3) Từ (1) (3) suy GI IH / /KO IH 2KO OP Từ (2) (3) ta dễ thấy IA / /KA IA 2KA OP Từ suy IA IH hay A I; IH Tương tự ta có B2 ,C I; IH Hay A , B2 ,C ,H thuộc đường trịn tâm I bán kính IH OP ta có điều phái chứng minh VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Đường trịn tiếp xúc với cạnh tam giác phần kéo dài hai cạnh gọi đường tròn bàng tiếp tam giác Tâm đường trịn bàng tiếp tam giác góc A giao điểm hai đường phân giác ngồi góc B góc C Mỗi tam giác có đường trịn bàng tiếp CÁC DẠNG BÀI TẬP CƠ BẢN B 90 ) có O trung điểm Ví dụ 1) Cho hình thang vng ABCD (A 90 Chứng minh CD tiếp tuyến đường trịn AB góc COD đường kính AB Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí 90 suy EOD 90 Xét tam giác Kéo dài OC cắt BD E COD COD EOD ta có OD chung OC OA OC OD COD EOD Suy DC DE hay tam giác OD OB ECD cân D Kẻ OH CD OBD OHD OH OB mà OB OA OH OB OA hay A,H, B thuộc đường tròn (O) Do CD tiếp tuyến đường trịn đường kính AB Ví dụ 2) Cho hình vng ABCD có cạnh a Gọi M, N hai điểm cạnh AB, AD cho chu vi tam giác AMN 2a Chứng minh đường thẳng MN ln tiếp xúc với đường trịn cố định Giải: Trên tia đối BA ta lấy điểm E cho BE ND Ta có BCE DCN CN CE Theo giả thiết ta có: MN AM AN AB AD AM MB AN DN AM AN MB BE Suy MN MB BE ME CMB Kẻ CH MN Từ ta suy MNC MEC CMN CH CB CD a Vậy D,H, B thuộc đường tròn tâm C bán kính CB a suy MN ln tiếp xúc với đường trịn tâm C bán kính a VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ 3) Cho tam giác ABC cân A đường cao BH Trên nửa mặt phẳng chứa C bờ AB vẽ Bx BA cắt đường tròn tâm B bán kính BH D Chứng minh CD tiếp tuyến (B) Giải: 90 Vì Bx BA B Vì tam giác ABC cân A nên ta có: B C Mặt khác ta có B1 90 B1 B2 Hai tam giác BHC BDC có B , BH BD R suy BHC BDC(c.g.c) suy BC chung, B BDC 90 Nói cách khác CD tiếp tuyến đường tròn (B) BHC Ví dụ 4) Cho tam giác ABC vng A (AB AC) đường cao AH Gọi E điểm đối xứng với B qua H Đường trịn tâm O đường kính EC cắt AC K Chứng minh HK tiếp tuyến đường tròn (O) Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí 90 Vì tam giác EKC có cạnh EC đường kính (O) nên EKC Kẻ HI AC BA / /HI / /EK suy AI IK từ ta có tam giác AHK cân ) B ( phụ với góc hai góc BAH,IHK H Do K C ( tam giác KOC cân O ) Mà Mặt khác ta có: K C 90 K K 90 suy HKO 90 hay HK tiếp tuyến B (O) Ví dụ 5) Cho tam giác ABC vuông A đường cao AH Vẽ đường trịn tâm A bán kính AH kẻ tiếp tuyến BD,CE với (A) ( D,E tiếp điểm khác H ) Chứng minh DE tiếp xúc với đường trịn đường kính BC Giải: HAB,CAH CAE Theo tính chất hai tiếp tuyến cắt ta có: DAB CAE HAB CAH BAC 90 hay Suy DAB CAE HAB CAH 180 D, A,E thẳng hàng Gọi O trung điểm DAB BC O tâm đường tròn ngoại tiếp tam giác ABC Mặt khác AD AE nên OA đường trung bình hình thang vng BDEC suy OA DE A Nói cách khác DE tiếp tuyến đường trịn (O) Đường kính BC VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ 6) Cho tam giác ABC ngoại tiếp đường trịn tâm I bán kính r Giả sử (I; r) tiếp xúc với cạnh AB, BC,CE D,E,F Đặt AB c, BC a, AC b, AD x, BE y,CF z a) Hãy tính x, y, z theo a, b,c b) Chứng minh S p.r (trong S diện tích tam giác p chu vi tam giác, r bán kính vịng tròn ngoại tiếp tam giác c) Chứng minh: 1 1 (ha ; h b ; h c ) r h b h c đường cao kẻ từ đỉnh A, B,C tam giác A, B,C Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí a) Từ giả thiết ta có AF AD x, BD BE y,CE CF z Từ suy x y c y z a Lần lượt trừ vế phương trình (4) hệ cho z x b x y z a b c abc pc z acb phương trình ta thu được: y pb bc a pa x b) Ta có S ABC S IAB S IAC S IBC 1 r.AB r.AC r.BC r.2p p.r 2 c) Ta có S p 1 a b c 1 1 a.h a , , a b c h a 2S h b 2S h c 2S h a h b h c 2S S r VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRỊN Xét hai đường tròn (O; R),(O'; R ') A) Hai đường tròn tiếp xúc nhau: Khi hai đường trịn tiếp xúc nhau, xảy khả Trường hợp 1: Hai đường trịn tiếp xúc ngồi: + Điều kiện R R ' OO' Tiếp điểm nằm đường nối tâm hai đường tròn Đường nối tâm trục đối xứng hai đường tròn VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ 1: Cho hai đường trịn (O) (O') tiếp xúc ngồi A Qua A kẻ cát tuyến cắt (O) C , cắt đường tròn (O') D a) Chứng minh OC / /O' D b) Kẻ tiếp tuyến chung MN , gọi P , Q điểm đối xứng với M, N qua OO' Chứng minh MNQP hình thang cân MN PQ MP NQ Gọi K giao điểm AM với (O') Chứng c) Tính góc MAN minh N,O',K thẳng hàng Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí a) Do hai đường trịn (O) (O') tiếp xúc A nên A nằm OAD,O' DAO' Lại có OCA OO' Ta có CAO AD O' DA tam giác COA, DO' A tam giác cân Từ suy O' OCA DA OC / /O' D b) + Vì MP OO', NQ OO' MP / /OO' MNQP hình thang Vì M đối xứng với P qua OO' , N đối xứng với Q qua OO' O đối xứng phụ với OMP 90 Mặt khác MPQ,PMN với O qua OO' nên OPM PMN suy MNQP hình thang cân OMP nên MPQ góc OPM (Chú ý: Từ ta suy PQ tiếp tuyến chung hai đường tròn) + Kẻ tiếp tuyến chung qua A hai đường tròn cắt MN,PQ R,S ta có: RM RA RN,SA SP SQ suy MN PQ 2RS Mặt khác RS đường trung bình hình thang nên MP NQ 2RS hay MP NQ MN PQ c) Từ câu b ta có AR RM RN nên tam giác MAN vng A , từ 90 KN đường kính (O') , hay N,O',K thẳng hàng suy NAK Ví dụ 2: Cho hai đường tròn (O; R) (O'; R ') tiếp xúc A với (R R ') Đường nối tâm OO' cắt (O),(O') B,C Dây DE (O) vng góc với BC trung điểm K BC a) Chứng minh BDCE hình thoi b) Gọi I giao điểm EC (O') Chứng minh D, A,I thẳng hàng c) Chứng minh KI tiếp tuyến (O') Giải: VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Vì BC vng góc với đường thẳng DE nên DK KE, BK KC (theo giả thiết) tứ giác BDCE hình bình hành, lại có BC DE nên hình thoi b) Vì tam giác BDA nội tiếp đường trịn O1 có BA đường kính nên 90 (1) BDA vuông D Gọi I' giao điểm DA với CE AI'C ) Lại có AIC nội tiếp đường trịn O có AC (vì so le với BDA 2 90 (2) đường kính nên tam giác AIC vuông I , hay AIC Từ (1) (2) suy I I' Vậy D, A,I thẳng hàng c) Vì tam giác DIE vng I có IK trung tuyến ứng với cạnh huyền I (1) Lại có D C (2) phụ với DE nên KD KI KE D C (3), O C O I bán kính đường trịn O C DEC 2 2 90 KI Từ (1),(2),(3) suy I2 I3 I2 I5 I5 I3 90 hay KIO vng góc với bán kính O I đường tròn O Vậy KI tiếp tuyến đường tròn O Ví dụ 3) Chứng minh rằng: Trong tam giác tâm vòng tròn ngoại tiếp O trọng tâm G trực tâm H nằm đường thẳng HG 2GO (Đường thẳng Ơ le) Gọi R,r,d bán kính vịng trịn VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí ngoại tiếp nội tiếp khoảng cách hai tâm chứng minh d R r (Hệ thức Ơ le) Giải: 90 DC AC mặt + Kẻ đường kính AD đường trịn (O) ACD khác BH AC BH / /DC , tương tự ta có: CH / /BD BHCD hình bình hành hai đường chéo cắt trung điểm đường Suy OM đường trung bình tam giác AHD Giả sử HO AM G GM OM G trọng tâm tam giác ABC HG 2GO GA HA Nhận xét: Nếu kéo dài đường cao AH cắt (O) H' ta có H,H' đối xứng qua BC Suy tâm đường tròn ngoại tiếp tam giác ABC đối xứng với tâm đường tròn ngoại tiếp HBC qua BC + Ta có : IA.IF R d (Xem phần tính chất tiếp tuyến, cát tuyến) Mặt khác AF phân giác góc A FB FC FI Kẻ đường kính FAC 1A Tam giác IAK,FNC hai tam giác FN FCN 90 FNC VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí vng có góc nhọn nên đồng dạng với Từ suy IA IK IA.FC FN.IK IA.FC 2Rr Hay d R r FN FC B Hai đường tròn cắt nhau: Khi hai đường tròn (O1 ),(O ) cắt theo dây AB O1O AB trung điểm H AB Hay AB đường trung trực O1O Khi giải toán liên quan dây cung đường tròn, cát tuyến ta cần ý kẻ thêm đường phụ đường vng góc từ tâm đến dây cung VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Ví dụ Cho hai đường trịn (O1 ; R),(O ; R) cắt A, B ( O1 ,O nằm khác phía so với đường thẳng AB ) Một cát tuyến PAQ xoay quanh A P O1 ,Q O2 cho A nằm P Q Hãy xác đinh vị trí cát tuyến PAQ trường hợp a) A trung điểm PQ b) PQ có độ dài lớn c) Chu vi tam giác BPQ lớn d) S BPQ lớn Lời giải: a) Giả sử xác định vị trí cát tuyến PAQ cho PA AQ Kẻ O1H vng góc với dây PA PH HA PA Kẻ O2 K vng góc với dây AQ AK KQ AQ Nên AH AK Kẻ Ax / /O,H / /O 2K cắt O , O2 I O1I IO Ax PQ Từ suy cách xác định vị trí cát tuyến PAQ cát tuyến PAQ vng góc với IA A với I trung điểm đoạn nối tâm O1O VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí b) Trên hình, ta thấy PA HK Kẻ O M O1H tứ giác MHKO có ba góc vng nên hình chữ nhật HK MO Lúc O M đường vng góc kẻ từ O2 đến đường thẳng O1H,O O1 đường xiên kẻ từ O2 đến đường thẳng O1H Nên O M O1O hay PQ 2HK 2O 2M 2O 1O (không đổi) dấu đẳng thức xảy M O hay PQ / /O1O Vậy vị trí cát tuyến PAQ / /O1O PQ có độ dài lớn c) Qua A kẻ cát tuyến CAD vng góc với BA Thì tam giác ABC ABD vng A nội tiếp đường tròn O1 , O2 nên O1 trung điểm BC O2 trung điểm BD Lúc O1O đường trung bình tam giác BCD nên O1O / /CD suy PQ 2O1O (1) (theo câu b) Lại có BQ BD (2), BP BC (3) Từ (1),(2),(3) suy chu vi tam giác BPQ,C PQ BQ BP O 1O R R (khơng đổi) Dấu có P C,Q D Vậy chu vi tam giác BPQ đạt giá trị lớn cát tuyến PAQ vng góc với dây BA A d) Kẻ BN PQ BN BA VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí 2 Lúc S BPQ BN.PQ BA.CD khơng đổi Vậy S BPQ đạt giá trị lớn cát tuyến PAQ vng góc với dây chung BA A Ví dụ Cho hai đường trịn (O1 ; R),(O ; R) cắt đường thẳng O1H cắt O1 K, cắt (O ) B , O H cắt O1 C, cắt (O ) D Chứng minh ba đường thẳng BC, BD,HK đồng quy điểm Lời giải: Gọi giao điểm AC với BD E Các tam giác ACH, AKH nội tiếp đường trịn O1 có cạnh HA đường kính nên tam giác ACH vng C , tam giác AKH vuông K suy DC AE (1), HK AK (2) Lại có tam giác HKD,HBD nối tiếp dường trịn O có cạnh HD đường kính nên tam giác HKD vng K , tam giác HBD vuông B suy ra: HK KD (3), AB DE (4) Từ (2) (3) suy A,K, D thẳng hàng nên HK AD (5) Từ (1) (4)suy H trực tâm tam giác AED , EH AD (6) Từ (5) (6) suy H EK (vì qua H ngồi đường thẳng AD kẻ đường thẳng vng góc với AD ) VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Vậy AC, BD,HK đồng quy E giao điểm AC BD Xem tiếp tài liệu tại: https://vndoc.com/tai-lieu-hoc-tap-lop-9 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí ... Lại có D C (2) phụ với DE nên KD KI KE D C (3), O C O I bán kính đường trịn O C DEC 2? ?? 2 90 KI Từ (1), (2) ,(3) suy I? ?2 I3 I? ?2 I5 I5 I3 90 hay KIO vuông... O1 , O2 nên O1 trung điểm BC O2 trung điểm BD Lúc O1O đường trung bình tam giác BCD nên O1O / /CD suy PQ 2O1O (1) (theo câu b) Lại có BQ BD (2) , BP BC (3) Từ (1), (2) ,(3) suy chu... với BDA 2? ?? 90 (2) đường kính nên tam giác AIC vng I , hay AIC Từ (1) (2) suy I I'' Vậy D, A,I thẳng hàng c) Vì tam giác DIE vng I có IK trung tuyến ứng với cạnh huyền I (1) Lại có