1. Trang chủ
  2. » Tất cả

Tính thuận và tính nghịch của hệ tam phân mũ không đều trên đa tạp tâm

42 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 42
Dung lượng 327,11 KB

Nội dung

Lời nói đầu Luận văn đã trình bày được các khái niệm mới như hệ tam phân mũ đều và không đều, một số tính chất cơ bản của chúng, tập trung nghiên cứu hệ tam phân mũ không đều trên đa tạp tâm Đối xứng[.]

Lời nói đầu Luận văn trình bày khái niệm hệ tam phân mũ khơng đều, số tính chất chúng, tập trung nghiên cứu hệ tam phân mũ không đa tạp tâm Đối xứng thuận nghịch thời gian đối xứng nghiên cứu khoa học tự nhiên, xuất nhiều hệ vật lý, đặc biệt học cổ điển lượng tử Trong khuôn khổ luận văn tơi trình bày tính thuận tính nghịch phương trình vi phân có tam phân mũ khơng đa tạp tâm không gian Banach vô hạn chiều Luận văn chia thành chương: Chương 1: Giới thiệu sơ lược khái niệm tam phân mũ đều, tam phân mũ khơng phương trình vi phân, khái niệm đa tạp tâm Chương 2: Trình bày tính thuận nghịch phương trình vi phân khơng gian Banach vơ hạn chiều Chương 3: Trình bày tính thuận tính nghịch phương trình vi phân có tam phân mũ khơng đa tạp tâm không gian Banach vô hạn chiều Luận văn hồn thành hướng dẫn, bảo tận tình TS Lê Huy Tiễn - Giảng viên khoa Toán-Cơ-Tin học, trường ĐH Khoa học tự nhiên Tôi xin bày tỏ lịng biết ơn sâu sắc đến thầy Tơi xin chân thành cảm ơn thầy cô khoa Toán-Cơ-Tin học, người trực tiếp truyền thụ kiến thức, giảng dạy tơi suốt khóa học Cuối cùng, tơi gửi lời cảm ơn gia đình, bạn bè đặc biệt chồng tôi, bên tôi, động viên, giúp đỡ tơi hồn thành luận văn Hà Nội, tháng 12 năm 2012 Phan Thị Thanh Vân Chương Kiến thức chuẩn bị 1.1 1.1.1 Hệ tam phân mũ Hệ tam phân mũ Cho X không gian Banach, xét ánh xạ liên tục t 7→ A(t) cho A(t) toán tử tuyến tính bị chặn X với t ∈ R phương trình v = A(t)v (1.1) Nghiệm (1.1) với v (s) = vs viết dạng v (t) = T (t, s)v (s), với T (t, s) tốn tử tiến hóa liên kết Ta có T (t, t) = Id T (t, s)T (s, r) = T (t, r) với t, s, r ∈ R, T (t, s) khả nghịch T (t, s)−1 = T (s, t) với t, s ∈ R Giả sử A(t) có dạng chéo khối tương ứng với thành phần hợp thành E , F1 , F2 (X = E ⊕ F1 ⊕ F2 ), với E , F1 , F2 tương ứng không gian tâm, ổn định không ổn định Khi nghiệm (1.1) viết dạng v (t) = (U (t, s), V1 (t, s), V2 (t, s))v (s) U (t, s), V1 (t, s) V2 (t, s) toán tử tiến hóa liên kết tương ứng với ba khối A(t), T (t, s) = (U (t, s), V1 (t, s), V2 (t, s)) Định nghĩa 1.1 Ta nói phương trình (1.1) có tam phân mũ tồn số b > a ≥ 0, d > c ≥ 0, D > cho Với s, t ∈ R, t ≥ s, −1 ||U (t, s)|| ≤ Dea(t−s) , ||V2 (t, s) || ≤ De−b(t−s) , Với s, t ∈ R, t ≤ s ||U (t, s)|| ≤ Dec(s−t) , ||V1 (t, s) 1.1.2 −1 || ≤ De−d(s−t) Hệ tam phân mũ không Hệ tam phân mũ không trường hợp mở rộng hệ tam phân mũ đều, tìm hiểu giống khác chúng Giả sử X không gian Banach, A : R → B (X ) hàm liên tục, B (X ) tập hợp tốn tử tuyến tính bị chặn X Xét toán giá trị ban đầu v = A(t)v, v (s) = vs , (1.2) với s ∈ R vs ∈ X Giả thiết tất nghiệm (1.2) tồn cục Ta viết nghiệm tốn giá trị ban đầu (1.2) dạng v (t) = T (t, s)v (s), T (t, s) tốn tử tiến hóa liên kết Xét số ≤ a < b, ≤ c < d, (1.3) a0 , b , c d ≥ (1.4) Định nghĩa 1.2 Ta nói phương trình tuyến tính v = A(t)v có tam phân mũ không tồn hàm P, Q1 , Q2 : R → B (X ) cho P (t), Q1 (t) Q2 (t) phép chiếu với P (t) + Q1 (t) + Q2 (t) = Id, P (t)T (t, s) = T (t, s)P (s), Qi (t)T (t, s) = T (t, s)Qi (s), i = 1, với t, s ∈ R, tồn số (1.3)-(1.4) Di > 0, ≤ i ≤ cho Với t, s ∈ R, t ≥ s, ||T (t, s)P (s)|| ≤ D1 ea(t−s)+a |s| , ||T (t, s)−1 Q2 (t)|| ≤ D3 e−b(t−s)+b |t| ; (1.5) Với t, s ∈ R, t ≤ s, ||T (t, s)P (s)|| ≤ D2 ec(s−t)+c |s| , ||T (t, s)−1 Q1 (t)|| ≤ D4 e−d(s−t)+d |t| (1.6) Các số a, b, c, d coi số mũ Lyapunov, tính khơng dáng điệu mũ định số a0 , b0 , c0 , d0 Khi ba thành phần nghiệm tương ứng với thành phần tâm, ổn định khơng ổn định A(t) ta lấy a = c = (do b > d > 0) Nhận xét 1.1 So sánh hai định nghĩa tam phân mũ tam phân mũ không ta thấy hệ tam phân mũ khơng có thêm lượng mũ a0 |s|, b0 |t|, c0 |s|, d0 |t| Khi a0 = b0 = c0 = d0 = khái niệm tam phân mũ không trùng với khái niệm tam phân mũ Ví dụ 1.1 Cho ω > ε > hệ số thực hệ phương trình R3 x0 = , y = (−ω − εt sin t)y, z = (ω + εt sin t)z (1.7) Hệ phương trình vi phân (1.7) có tam phân mũ không Chứng minh Ta thấy nghiệm hệ (1.7) viết dạng x(t) = U (t, s)x(s), y (t) = V1 (t, s)y (s), z (t) = V2 (t, s)z (s), U (t, s) = 1, V1 (t, s) = e−ωt+ωs+εt cos t−εs cos s−ε sin t+ε sin s , V2 (t, s) = eωt−ωs−εt cos t+εs cos s+ε sin t−ε sin s Tốn tử tiến hóa T (t, s) hệ (1.7) cho T (t, s)(x, y, z ) = (U (t, s)x, V1 (t, s)y, V2 (t, s)z ) Giả sử P (t), Q1 (t), Q2 (t) : R3 → R3 phép chiếu xác định P (t)(x, y, z ) = x, Q1 (t)(x, y, z ) = y, Q2 (t)(x, y, z ) = z Rõ ràng phép chiếu thỏa mãn điều kiện phép chiếu định nghĩa hệ tam phân mũ không Chọn b = d = ω − ε, b0 = d0 = 2ε số a, a0 , c, c0 > 0, a < ω − ε, c < ω − ε Ta tồn D1 = D2 = D3 = D4 = D > cho ||V2 (t, s)−1 || ≤ De−(ω−ε)(t−s)+2ε|t| với t ≥ s ||V1 (t, s)−1 || ≤ De−(ω−ε)(s−t)+2ε|t| với t ≤ s ||U (t, s)|| ≤ Dea(t−s)+a |s| , ||U (t, s)|| ≤ Dec(s−t)+c |s| , Vì ||U (t, s)|| = nên ta có ||U (t, s)|| ≤ Dea(t−s)+a |s| với t ≥ s ||U (t, s)|| ≤ Dec(s−t)+c |s| với t ≤ s với a, a0 , c, c0 > 0, a < ω − ε, c < ω − ε; D > Ta chứng minh ||V1 (t, s)−1 || ≤ De−(ω−ε)(s−t)+2ε|t| với t ≤ s (1.8) ||V2 (t, s)−1 || ≤ De−(ω−ε)(t−s)+2ε|t| với t ≥ s (1.9) Ta viết lại V1 (t, s) sau: V1 (t, s) = e(−ω+ε)(t−s)+εt(cos t−1)−εs(cos s−1)+ε(sin s−sin t) , suy V1 (s, t) = e(−ω+ε)(s−t)−εt(cos t−1)+εs(cos s−1)−ε(sin s−sin t) (1.10) Với ≤ t ≤ s, từ (1.10) ta có V1 (s, t) ≤ e2ε e−(ω−ε)(s−t)+2εt , với t ≤ ≤ s ta có V1 (s, t) ≤ e2ε e−(ω−ε)(s−t) , với t ≤ s ≤ ta có V1 (s, t) ≤ e2ε e−(ω−ε)(s−t)+2ε|s| ≤ e2ε e−(ω−ε)(t−s)+2ε|t| mà V1 (s, t) = V1 (t, s)−1 suy V1 (t, s)−1 ≤ e2ε e−(ω−ε)(t−s)+2ε|t| Điều cho ta (1.8) Để thu (1.9) ta chứng minh tương tự Từ V2 (s, t) = e(−ω+ε)(t−s)−εs(cos s−1)+εt(cos t−1)+ε(sin s−sin t) ta có V2 (t, s)−1 ≤ e−(ω−ε)(t−s)+2ε|t| Từ việc thỏa mãn (1.9) (1.8) ta có hệ (1.7) có tam phân mũ khơng 1.1.3 Không gian tâm, ổn định khơng ổn định Giả sử phương trình v = A(t)v có tam phân mũ khơng Ta xét ba khơng gian tuyến tính E (t) = P (t)X, Fi (t) = Qi (t)X, i = 1, với t ∈ R Ta gọi E (t), F1 (t) F2 (t) tương ứng không gian tâm, ổn định không ổn định thời điểm t Ta có: X = E (t) ⊕ F1 (t) ⊕ F2 (t) với t ∈ R dim E (t), dim F1 (t), dim F2 (t) không phụ thuộc vào thời điểm t Nghiệm (1.2) viết dạng v (t) = (U (t, s)ξ, V1 (t, s)η1 , V2 (t, s)η2 ) với t ∈ R (1.11) với vs = (ξ, η1 , η2 ) ∈ E (s) × F1 (s) × F2 (s), U (t, s) := T (t, s)P (s) = T (t, s)P (s)2 = P (t)T (t, s)P (s) Vi (t, s) := T (t, s)Qi (s) = T (t, s)Qi (s)2 = Qi (t)T (t, s)Qi (s), i = 1, Trong trường hợp đặc biệt, không gian tâm, ổn định không ổn định không phụ thuộc vào t, tức E (t) = E , Fi (t) = Fi , i = 1, với t, tốn tử T (t, s) phải có dạng tương ứng với tổng trực tiếp E ⊕ F1 ⊕ F2 , hay T (t, s) biểu diễn dạng   U (t, s) 0     T (t, s) =  V1 (t, s)    0 V2 (t, s) Ngồi ra, tốn tử U (t, s) : E (s) → E (t) Vi (t, s) = Fi (s) → Fi (t), i = 1, khả nghịch Kí hiệu tốn tử nghịch đảo tương ứng U (t, s)−1 Vi (t, s)−1 , i = 1, ta có: U (t, s)−1 = U (s, t) Vi (t, s)−1 = Vi (s, t) với t, s ∈ R Chú ý bất đẳng thức (1.5)-(1.6) viết lại thành: ||U (t, s)|| ≤ Dea(t−s)+a |s| , ||V2 (t, s)−1 || ≤ De−b(t−s)+b |t| ||U (t, s)|| ≤ Dec(s−t)+c |s| , ||V1 (t, s)−1 || ≤ De−d(s−t)+d |t| Tiếp theo ta định nghĩa góc hai khơng gian F1 F2 , E F1 , E F2 tương ứng sau α(t) = inf {||y − z|| : y ∈ F1 (t); z ∈ F2 (t); ||y|| = ||z|| = 1} (1.12) β1 (t) = inf {||x − y|| : x ∈ E (t); y ∈ F1 (t); ||x|| = ||y|| = 1} β2 (t) = inf {||x − z|| : x ∈ E (t); z ∈ F2 (t); ||x|| = ||z|| = 1} Mệnh đề 1.1 Với t ∈ R ta có: ≤ α(t) ≤ , ||Q1 (t)|| ||Q1 (t)|| ≤ α(t) ≤ , ||Q2 (t)|| ||Q2 (t)|| ≤ β1 (t) ≤ , ||P (t)|| ||P (t)|| ≤ β2 (t) ≤ , ||P (t)|| ||P (t)|| ≤ β1 (t) ≤ , ||Q1 (t)|| ||Q1 (t)|| ≤ β2 (t) ≤ ||Q2 (t)|| ||Q2 (t)|| Chứng minh Ta chứng minh cho trường hợp góc khơng gian ổn định khơng ổn định α(t) Các bất đẳng thức khác chứng minh tương tự Chú ý Q1 (t)(y − z ) = y với y, z cho (1.12) Do đó, = ||Q1 (t)(y − z )|| ≤ ||Q1 (t)||.||y − z||, suy ≤ α(t) ||Q1 (t)|| Tiếp theo ta chứng minh α(t) ≤ ||Q1 (t)|| Thật vậy, với v, ω ∈ X mà v¯ = Q1 (t)v 6= ω ¯ = Q2 (t)ω 6= v¯ ω ¯ 2||z|| − ||v|| ||ω|| ... định nghĩa hệ tam phân mũ khơng đều, phân biệt với hệ tam phân mũ Ngồi ra, ta cịn nghiên cứu không gian tâm, ổn định không ổn định hệ tam phân mũ không đều, Mệnh đề 1.1 cho ta biết rằng, tính bị... nghĩa tam phân mũ tam phân mũ không ta thấy hệ tam phân mũ khơng có thêm lượng mũ a0 |s|, b0 |t|, c0 |s|, d0 |t| Khi a0 = b0 = c0 = d0 = khái niệm tam phân mũ không trùng với khái niệm tam phân mũ. .. góc không gian tâm, ổn định không ổn định tách khỏi 1.2 Đa tạp tâm 1.2.1 Các khái niệm Sự tồn hệ tam phân mũ không giả thiết yếu để thiết lập tồn đa tạp tâm, xác đa tạp "trung gian" Ta đưa vài

Ngày đăng: 28/02/2023, 15:14