1. Trang chủ
  2. » Tất cả

Giáo trình toán cao cấp 1 phần 2 trường đh công nghiệp quảng ninh

20 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 0,93 MB

Nội dung

107 Chương 2 PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN 2 1 Các khái niệm cơ bản 2 1 1 Tập hợp trong nR Trước hết, ta định nghĩa tập tích đề các nR như sau  1 2( , , , ) , 1,n n iR x x x x R i n   Mỗi phần[.]

Chương PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN 2.1 Các khái niệm 2.1.1 Tập hợp Rn Trước hết, ta định nghĩa tập tích đề Rn sau   Rn  ( x1 , x2 , , xn ) xi  R, i  1, n Mỗi phần tử Rn gọi điểm, thường kí hiệu M(x1,x2, ,xn), N(y1,y2, ,yn) Trong tồn giáo trình, nói khoảng cách hai điểm M(x1,x2, ,xn), N(y1,y2, ,yn) khơng gian Ơclid Rn , kí hiệu d(M, N), ta hiểu khoảng cách định nghĩa sau: d(M, N) =  y1  x1 2   y2  x2 2     yn  xn 2 Vậy M ( x1; x2 ), N ( y1; y2 ) hai điểm R2, khoảng cách hai điểm kí hiệu d(M, N) tính theo cơng thức: d(M, N) = ( y1  x1 )2  ( y2  x2 )2 Cho M0 điểm thuộc R2 Người ta gọi -lận cận M0 tập hợp tất điểm MR2 cho d(M0, M) < , kí hiệu V ( M ) Người ta gọi lận cận M0 tập hợp chứa -lận cận M0  M0   M0  - lận cận M0 lận cận M0 Hình 2-1 Cho ER2 Điểm ME gọi điểm E tồn -lận cận M nằm hoàn  M (E) toàn E Tập E gọi tập   - lận cận M mở điểm điểm o Tập hợp tất điểm E kí hiệu E M điểm E Hình 2-2 Cho tập hợp ER2 Điểm NR2 gọi điểm biên E lận cận N vừa chứa điểm thuộc E, vừa chứa điểm không thuộc E 107 Điểm biên tập hợp E thuộc E, không thuộc E Tập hợp tất điểm biên E gọi biên E, kí hiệu E N  (E) N điểm biên E  M M điểm biên E Hình 2-3 Tập hợp E gọi đóng chứa điểm biên (tức điểm biên E phận E) Ta liên hệ khái niệm tập tập số thực R Trong tập hợp số thực, tập (a;b) tập mở, điểm x thoả mãn a

Ngày đăng: 27/02/2023, 19:31

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN