Microsoft Word NguyenDu ê KT Toan lan huong nguyen thi doc Bài 1 (1 0 điểm) Xác định phương trình của parabol P 2y ax bx c , biết P có phương trình trục đối xứng 3 4 x và P đi qua ha[.]
SỞ GIÁO DỤC VÀ ĐÀO TẠO TP.HỒ CHÍ MINH TRƯỜNG THPT NGUYỄN DU ĐỀ CHÍNH THỨC ( Đề có trang ) ĐỀ THI HỌC KỲ I NĂM HỌC 2019 – 2020 MƠN: TỐN 10 Thời gian làm bài: 90 phút Họ tên thí sinh : Số báo danh : Bài (1.0 điểm) Xác định phương trình parabol P : y ax bx c , biết P có phương trình trục đối xứng x 3 P qua hai điểm A 1;3 , B 0; Bài (1.0 điểm) Cho phương trình m2 x m2 x 2m , m tham số Tìm giá trị tham số m để phương trình vơ nghiệm Bài (1.0 điểm) Cho phương trình mx m 3 x m 11 Tìm m để phương trình có hai nghiệm phân biệt x1 , x2 thỏa: x12 x22 x1 x2 8 Bài (2.0 điểm) Giải phương trình sau: a) x x x b) x x 2 x y xy ( x y ) 3 Bài (1.0 điểm) Giải hệ phương trình: x y Bài (1.0 điểm) Cho tam giác ABC có AB 5, BC góc ABC 120o Tính chu vi bán kính đường trịn nội tiếp tam giác ABC Bài (2.0 điểm) Trong hệ trục Oxy cho tọa độ điểm A 1; 2 , B (1; 3), C (2; 3) a) Chứng minh A, B, C tạo thành ba đỉnh tam giác Tính số đo góc BAC b) Gọi G trọng tâm tam giác ABC Tìm tọa độ điểm M thuộc trục Ox cho MAG tam giác vuông A Bài (1.0 điểm) Trong thi vượt địa hình trí A tuệ, vận động viên phải di chuyển từ A đến B theo đường gấp khúc AMB , đoạn AM phải di chuyển đường thủy với vận tốc 9km / h , đoạn sông MB phải di chuyển đường với vận tốc 15km / h Với giả định vận tốc di chuyển đường thủy đường không đổi, hai bờ sông song C song hình vẽ tam giác ABC vng M C Cho độ rộng dòng sông AC km , độ dài đoạn đường BC 2km , M điểm đường BC với CM x mét (với x ) B a) Gọi t x thời gian di chuyển vận động viên theo đường gấp khúc AMB từ A qua M đến B Tính t x theo x 3x x2 với x Từ đó, xác định giá trị x cho thời gian di chuyển t x nhỏ b) Chứng minh Hết