1 ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH Tác giả Nguyễn Bá Hoàng Trường THPT Chuyên Lào Cai A PHẦN MỞ ĐẦU I Lý do chọn đề tài Các bài toán về Hình học phẳng thường xuyên[.]
ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TỐN YẾU TỐ CỐ ĐỊNH Tác giả: Nguyễn Bá Hoàng Trường THPT Chuyên Lào Cai A PHẦN MỞ ĐẦU I Lý chọn đề tài Các tốn Hình học phẳng thường xuyên xuất kì thi HSG mơn tốn ln đánh giá nội dung khó đề thi Phương tích trục đẳng phương công cụ thực hiệu để giải nhiều lớp tốn hình học Mặc dù vấn đề quen thuộc hình học phẳng, kiến thức đơn giản dễ hiểu, nhiên có ứng dụng nhiều tốn chứng minh vng góc, đồng quy, thẳng hàng, điểm cố đinh, đường cố định hay tốn tập hợp điểm… Chính kì thi học sinh giỏi quốc gia, thi Olympic Tốn quốc tế khu vực, tốn có liên quan đến phương tích trục đẳng phương thường xuyên đề cập thường xem dạng tốn hay kì thi Đối với lớp tốn yếu tố cố định học sinh thường gặp phải nhiều khó khăn giải từ việc dự đốn yếu tố cố định chứng minh thỏa mãn yêu cầu đề Tuy nhiên với hệ thống lý thuyết đơn giản hiệu phương tích, trục đẳng phương thường đem lại lời giải độc đáo, đẹp mắt không phần thú vị cho lớp tốn Chính tác giả lựa chọn chuyên đề: "Ứng dụng phương tích trục đẳng phương toán yếu tố cố định" để hy vọng phần chia sẻ giúp bạn tiếp cận tốt với toán yếu tố cố định công cụ vô hữu hiệu II Mục đích đề tài Thơng qua đề tài “Ứng dụng phương tích trục đẳng phương tốn yếu tố cố định” tác giả mong muốn nhận góp ý trao đổi bạn đồng nghiệp em học sinh Chúng mong muốn đề tài góp phần nhỏ để việc ứng dụng phương tích, trục đẳng phương tốn yếu tố cố định nói riêng tốn hình học phẳng nói chung đạt hiệu cao Từ giúp em học sinh hiểu rõ việc sử dụng phương tích, trục đẳng phương tăng khả vận dụng vào giải tốn hình học cách tốt skkn B PHẦN NỘI DUNG I Hệ thống lý thuyết phương tích trục đẳng phương Phương tích điểm đường tròn Định lý 1.1 Cho đường tròn (O; R) điểm M cố định, OM = d Một đường thẳng thay đổi qua M cắt đường trịn hai điểm A B Khi MA.MB MO R d R Chứng minh: A B M O C Gọi C điểm đối xứng A qua O Ta có CB AM hay B hình chiếu C AM Khi ta có MA.MB MA.MB MC.MA MO OC MO OA MO OA MO OA MO OA OM OA2 d R Định nghĩa Giá trị không đổi MA.MB d R định lý 1.1 gọi phương tích điểm M đường trịn (O) kí hiệu M /(O) Khi theo định nghĩa ta có M / O MA.MB d R Định lý 1.2 Nếu hai đường thẳng AB CD cắt P PA.PB PC.PD điểm A, B, C, D thuộc đường tròn Chứng minh Giả sử đường tròn ngoại tiếp tam giác ABC cắt CD D’ Khi ta có theo định lý 1.1 ta có PA.PB PC.PD , suy PC.PD PC.PD D D Suy điểm A, B, C D thuộc đường trịn Một số tính chất 1) M nằm đường tròn (O) M / O M nằm ngồi đường trịn (O) M / O M nằm đường tròn (O) M / O skkn 2) Khi M nằm ngồi đường trịn (O) MT tiếp tuyến (O) M / O MT 3) Nếu A, B cố định AB AM const M cố định Ý tưởng giúp ta giải toán đường qua điểm cố định 4) Cho hai đường thẳng AB, MT phân biệt cắt M (M không trùng với A, B, T) Khi đó, MA.MB MT đường tròn ngoại tiếp tam giác ABT tiếp xúc với MT T Trục đẳng phương hai đường tròn Định lý 2.1 Cho hai đường trịn khơng đồng tâm (O1; R1) (O2; R2) Tập hợp điểm M có phương tích hai đường trịn đường thẳng, đường thẳng gọi trục đẳng phương hai đường tròn (O1) (O2) Chứng minh: M O1 O2 H I Giả sử điểm M có phương tích đến hai đường trịn Gọi H hình chiếu M O1O2, I trung điểm O1O2 Ta có: M / O1 M / O2 MO12 R12 MO22 R22 MO12 MO22 R12 R22 MH HO12 MH HO2 R12 R22 HO12 HO2 R12 R22 HO1 HO2 IH HO HO R R12 R22 2O1O2 2 R22 O2O1.2 HI R12 R22 1 Từ suy H cố định, suy M thuộc đường thẳng qua H vng góc với O1O2 Vậy tập hợp điểm M có phương tích hai đường tròn đường thẳng qua điểm H (xác định (1)) vuông góc với O1O2 Một số hệ skkn Cho hai đường tròn (O1) (O2) Từ định lý 2.1 ta suy tính chất sau: 1) Trục đẳng phương hai đường trịn vng góc với đường thẳng nối tâm 2) Nếu hai đường tròn cắt A B AB trục đẳng phương chúng 3) Nếu điểm M có phương tích (O1) (O2) đường thẳng qua M vng góc với O1O2 trục đẳng phương hai đường trịn 4) Nếu hai điểm M, N có phương tích hai đường trịn đường thẳng MN trục đẳng phương hai đường trịn 5) Nếu điểm có phương tích hai đường trịn điểm thẳng hàng 6) Nếu (O1) (O2) tiếp xúc A đường thẳng qua A vng góc với O1O2 trục đẳng phương hai đường trịn Cách dựng trục đẳng phương hai đường trịn khơng đồng tâm Trong mặt phẳng cho hai đường trịn khơng đồng tâm (O1) (O2) Xét trường hợp sau: Trường hợp 1: Hai đường tròn cắt hai điểm phân biệt A, B Khi đường thẳng AB trục đẳng phương hai đường tròn Trường hợp 2: Hai đường tròn tiếp xúc T Khi tiếp tuyến chung T trục đẳng phương hai đường tròn Trường hợp 3: Hai đường trịn khơng có điểm chung Dựng đường trịn (O3) cắt hai đường tròn (O1) (O2) A, B C, D Đường thẳng AB CD cắt M Đường thẳng qua M vng góc với O1O2 trục đẳng phương (O1) (O2) (Hình vẽ) A A C O1 O2 O1 T O2 O2 O1 B D B M Tâm đẳng phương skkn Định lý 3.1 Cho đường tròn (C1), (C2) (C3) Khi trục đẳng phương cặp đường tròn trùng song song qua điểm Nếu trục đẳng phương qua điểm điểm gọi tâm đẳng phương ba đường tròn Chứng minh d12 O1 O2 M d23 d13 O3 Gọi dij trục đẳng phương hai đường tròn (Ci) (Cj) Ta xét hai trường hợp sau TH1: Giả sử có cặp đường thẳng song song, khơng tính tổng quát ta giả sử d12 // d23 Ta có d12 O1O2 , d 23 O2O3 suy O1 , O2 , O3 thẳng hàng Mà d13 O1O3 suy d13 // d 23 // d12 TH2: Giả sử d12 d23 có điểm M chung Khi ta có: M / O1 M / O2 M / O1 M /O3 M d13 M / O2 M / O3 Từ suy có hai đường thẳng trùng trục đẳng phương cặp đường tròn lại Nếu hai trục đẳng phương cắt điểm điểm thuộc trục đẳng phương lại Một số hệ 1) Nếu đường trịn đơi cắt dây cung chung qua điểm 2) Nếu trục đẳng phương song song trùng tâm đường tròn thẳng hàng 3) Nếu đường tròn qua điểm có tâm thẳng hàng trục đẳng phương trùng skkn II Bài tập áp dụng Bài Cho đường tròn (O) hai điểm A, B cố định Một đường thẳng quay quanh A, cắt (O) M N Chứng minh tâm đường tròn ngoại tiếp tam giác BMN thuộc đường thẳng cố định Giải: A C M B I N O Gọi I tâm đường tròn ngoại tiếp tam giác MNB Gọi C giao điểm AB (I) Khi ta có A/ I AC AB AM AN A/ O (khơng đổi A, (O) cố định) Suy AC A/ O AB Vì A, B cố định C thuộc AB nên từ hệ thức ta có C cố định Suy I thuộc đường trung trực BC cố định Nhận xét: Việc tìm điểm C cố định dễ hiểu tâm đường tròn ngoại tiếp tam giác nằm đường trung trực dây cung Hơn điểm B cố định đường tròn ngoại tiếp tam giác BMN với đường trịn (O) có trục đẳng phương MN Do A (O) cố định nên A/ O khơng đổi Bài Cho đường trịn tâm O đường kính AB điểm H cố định thuộc AB Từ điểm K thay đổi tiếp tuyến B (O), vẽ đường tròn (K; KH) cắt (O) C D Chứng minh CD qua điểm cố định Giải skkn C K B A O H I M D Gọi I điểm đối xứng H qua B, suy I cố định thuộc (K) Gọi M giao điểm CD AB Vì CD trục đẳng phương (O) (K) nên ta có: MH MI MC.MD MA.MB MB BH MB BH MB BH MB MB BI MB MB BA 2 MB.BA MB BH MB MB.BA BM BH BA Vì A, B, H cố định suy M cố định Do CD ln qua điểm M cố định Nhận xét: Việc xác định điểm M giao điểm CD AB (cố định) dễ dàng để dự đốn ta thay đổi vị trí điểm K Do A, B cố định tiếp tuyến KB cố định nên điểm I xuất cố định dễ hiểu M / K MH MI MC.MD M / O Bài (VMO 2014) Cho tam giác nhọn ABC nội tiếp đường trịn (O), B, C cố định A thay đổi (O) Trên tia AB AC lấy điểm M N cho MA = MC NA = NB Các đường tròn ngoại tiếp tam giác AMN ABC cắt P P A Đường thẳng MN cắt đường thẳng BC Q a) Chứng minh ba điểm A, P, Q thẳng hàng b) Gọi D trung điểm BC Các đường trịn có tâm M, N qua A cắt K K A Đường thẳng qua A vng góc với AK cắt BC E Đường tròn ngoại tiếp tam giác ADE cắt (O) F F A Chứng minh đường thẳng AF qua điểm cố định Giải: skkn A N O C E B Q D F P K M I a) Khơng tính tổng quát, ta giả sử AB AC hình vẽ, trường hợp cịn lại hồn tồn tương tự Khi đó, M nằm ngồi đoạn AB N nằm đoạn AC Do NA = NB nên NAB MA = MC nên MCA MAC Từ suy NBA MCA hay tứ giác BMCN NBA nội tiếp ta QM.QN = QB.QC Từ suy Q có phương tích đến hai đường trịn (O) (AMN) nên nằm trục đẳng phương hai đường trịn Trục đẳng phương dây chung AP nên suy A, P, Q thẳng hàng b) Ta thấy đường tròn (ODC) tiếp xúc với (O) C nên trục đẳng phương hai đường trịn tiếp tuyến d (O) C Ta chứng minh O ∈ (ADE) Thật vậy, ta có O,M nằm trung trực AC nên OM ⊥ AC Tương tự ON ⊥ AB nên O trực tâm tam giác AMN Suy AO ⊥ MN Xét hai đường trịn (M, MA), (N, NA) dây chung vng góc với đường nối tâm nên ta 900 Hơn nữa, ta có có AK ⊥ MN Từ suy A, O, K thẳng hàng nên OAE 900 nên tứ giác AODE nội tiếp hay O ∈ (ADE) Do đó, trục đẳng phương (ADE) ODE (ODC) OD Ngồi ra, trục đẳng phương (O) (ADE) AF skkn Xét ba đường trịn (O), (ADE), (ODC) có trục đẳng phương cặp đường tròn OD, d, AF nên chúng đồng quy điểm Vậy AF qua giao điểm OD với đường thẳng d điểm cố định Nhận xét Câu a) tốn dễ dàng giải ý tưởng chứng minh điểm B, M, N, C thuộc đường tròn Ω đoạn AP, MN, BC trục đẳng phương tương ứng hai ba đường tròn (O), Ω, (AMN) nên đồng quy tâm đẳng phương Q Hướng tiếp cận nhận thấy Tuy nhiên, ý b) có xuất nhiều đường tròn, đường thẳng với yêu cầu “đi qua điểm cố định” nhiều bạn gặp khó khăn Nhưng để ý cẩn thận ta dễ dàng tìm điểm cố định I cách cho A tiến dần đến hai điểm đối xứng với B, C qua tâm (O) để phát điểm cố định có phải nằm tiếp tuyến (O) B, C Và khơng khó để nhận mơ hình quen thuộc tứ giác điều hịa đường đối trung Cụ thể ABFC tứ giác điều hòa tương ứng với AF đường đối trung tam giác ABC Lời giải nêu thực tế chứng minh lại tính chất mơ hình mà thơi Ta biết trong tứ giác điều hịa tiếp tuyến đường trịn ngoại tiếp hai đỉnh đối đồng quy với đường chéo qua hai đỉnh lại, đường đối trung đối xứng với trung tuyến AD qua phân giác góc A (cũng coi phần mơ hình tứ giác điều hịa) Thông qua cách dựng điểm E giao điểm tiếp tuyến (O) với BC, toán xây dựng thêm đường trịn đường kính EO để có tứ giác Trên thực tế, hai bước xây dựng bị che giấu chất thông qua điểm thẳng hàng điểm đồng viên nhằm loại vai trò điểm O Bài (VMO 2015) Cho đường tròn (O) hai điểm B, C cố định (O), BC khơng đường kính Một điểm A thay đổi (O) cho tam giác ABC nhọn Gọi E, F chân đường cao kẻ từ B, C tam giác ABC Cho (I) đường tròn thay đổi qua E, F có tâm I a) Giả sử (I) tiếp xúc với BC điểm D Chứng minh DB cot B DC cot C b) Giả sử (I) cắt cạnh BC hai điểm M, N Gọi H trực tâm tam giác ABC P, Q giao điểm (I) với đường tròn ngoại tiếp tam giác HBC Đường tròn (K) qua P, Q tiếp skkn xúc với (O) điểm T (T phía A PQ) Chứng minh đường phân giác qua điểm cố định góc MTN Giải: a) Giả sử điểm D nằm cạnh BC, trường hợp điểm D nằm ngồi chứng minh tương tự Ta có hai cách xử lý sau: Cách A E S R I F B O C D Gọi R, S giao điểm (I) với BC (các giao điểm tương ứng trùng E, F trường hợp tam giác ABC cân) Ta có AR AF AS AE AR AE AB RS / / BC AS AF AC DB BF BR BF BR BF AB BF BE cot B Do (I) tiếp xúc với BC D nên DC CE.CS CE CS CE AC CE CF cot C Do DB cot B DC cot C Cách 10 skkn A T K J M O H N I B E D R S C U X Gọi R, S trung điểm DB, DC R, S tâm đường tròn ngoại tiếp tam giác BMD, CND Ta có TM TN , MR DB ' BC DC ' NS TNS TMR TNS c.g.c Bằng biến đổi góc ta thu TMR Suy TR = TS hay T nằm đường trung trực BC Gọi X tâm đường tròn ngoại tiếp tam giác HBC X cố định Ta chứng minh T nằm trục đẳng phương đường tròn (S) (X) Gọi U trung điểm XD Ta thấy T / X T / S TX XC TS SC TX TS XD CD SC TD SD XD CD SC TC XD 2 TD XD TC XD CD 2TD XD DS DU DT Điều tương đương với tam giác TSU vuông S Hơn nữa, ta thấy 19 skkn 900 STU SUT 900 RTS BXC 1800 MTN MIN 1800 TSU Đẳng thức cuối nên suy T nằm trục đẳng phương (S) (X) Do hai đường tròn cố định nên trục đẳng phương chúng cố định T giao điểm hai đường thẳng cố định nên T điểm cố định Ta có đpcm Bài 10 (USA TST 2012) Cho tam giác ABC, P điểm chuyển động BC Gọi Y, Z điểm AC, AB cho PY = PC, PZ = PB Chứng minh đường tròn ngoại tiếp tam giác AYZ qua trực tâm tam giác ABC Giải: A Y T Z H S B P G C L Gọi T, S hình chiếu P AC, AB Kẻ đường cao AG tam giác ABC, AG cắt đường tròn ngoại tiếp tam giác AYZ điểm H cắt đường tròn ngoại tiếp tam giác ABC L Dễ thấy TY = TC nên Tương tự S/ AYZ S/ ABC T / AYZ T / ABC TY TA 1 TC.TA 1 nên đường tròn ngoại tiếp tam giác ABC, AYZ AST đồng trục Do G, T , S AT nên G/ AYZ G/ ABC 1 GH GA GH 1 1 hay G trung điểm HL GL.GA GL 20 skkn ... B, H cố định suy M cố định Do CD ln qua điểm M cố định Nhận xét: Việc xác định điểm M giao điểm CD AB (cố định) dễ dàng để dự đoán ta thay đổi vị trí điểm K Do A, B cố định tiếp tuyến KB cố định. .. câu b) toán, tương tự toán yếu tố cố định kỳ thi VMO, TST gần đây, tốn địi hỏi học sinh khả phán đoán, suy luận tốt khả "đơn giản hố" tốn, tìm yếu tố định loạt giả thiết phức tạp "ít tác dụng" ... trùng trục đẳng phương cặp đường tròn lại Nếu hai trục đẳng phương cắt điểm điểm thuộc trục đẳng phương lại Một số hệ 1) Nếu đường trịn đơi cắt dây cung chung qua điểm 2) Nếu trục đẳng phương