Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
3,61 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT HÀM RỒNG SÁNG KIẾN KINH NGHIỆM ỨNG DỤNG HÌNH HỌC GIẢI NHANH MỘT SỐ BÀI TỐN VỀ MƠ ĐUN SỐ PHỨC Ở MỨC ĐỘ VẬN DỤNG CAO Người thực hiện: LÊ MẠNH HÙNG Chức vụ: Giáo viên SKKN thuộc môn: Tốn THANH HỐ, NĂM 2018 download by : skknchat@gmail.com MỤC LỤC MỞ ĐẦU 1.1 Lí chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng phạm vi nghiên cứu 1.4 Phương pháp nghiên cứu NỘI DUNG 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.2.1 Đối với giáo viên .3 2.2.2 Đối với học sinh 2.3 Giải pháp giải vấn đề 2.3.1 Sử dụng kiến thức về e líp tìm giá trị lớn nhất , nhỏ nhất của mô đun số phức ………………………………………………………………………………………4 2.3.2 Sử dụng kiến thức về véc tơ tìm giá trị lớn nhất , nhỏ nhất của mô đun số phức ……………………………………………………………………………………………….8 2.3.3 Sử dụng kiến thức về đường tròn, đường thẳng tìm giá trị lớn nhất , nhỏ nhất của mô đun số phức……………………………………………………………………….10 2.4 Hiệu sáng kiến kinh nghiệm 16 3.1 Kết luận .19 3.2 Kiến nghị .19 TÀI LIỆU THAM KHẢO 20 download by : skknchat@gmail.com MỞ ĐẦU 1.1 Lí chọn đề tài Trong chương trình SGK đề thi tốt nghiệp thi tuyển sinh đại học trước dạng toán số phức đưa dạng bản, đa phần mức độ nhận biết, thông hiểu Các câu hỏi mang tính vận dụng gần khơng xuất Vì thế, Bộ giáo dục Đào tạo đưa đề minh họa môn Tốn cho kì thi THPT Quốc gia 2017-2018 , nhiều giáo viên đa số học sinh gặp khó khăn việc tìm lời giải số phức mức độ vận dụng Ngoài ra, tài liệu tham khảo cho dạng toán chưa có xuất rời rạc tốn đơn lẻ Do việc tổng hợp đưa phương pháp giải nhanh dạng toán cần thiết cho học sinh trình ôn thi THPT quốc gia Xuất phát từ thực tế trên, với số kinh nghiệm trình giảng dạy tham khảo số tài liệu, chọn đề tài “ỨNG DỤNG HÌNH HỌC GIẢI NHANH MỘT SỐ BÀI TỐN VỀ MƠ ĐUN SỐ PHỨC Ở MỨC ĐỘ VẬN DỤNG CAO” nhằm giúp em hiểu vận dụng kiến thức hình học giải tốt toán vận dụng cao để đạt kết tốt kì thi 1.2 Mục đích nghiên cứu Thơng qua việc vận dụng kiến thức đường tròn , elíp giải tốn mơ đun số phức giúp học sinh hiểu, định hướng cách làm tập, giải số toán số phức mức độ vận dụng cao cách xác nhanh chóng Từ kích thích khả tư duy, ham hiểu biết học sinh môn học 1.3 Đối tượng phạm vi nghiên cứu - Kiến thức chương số phức chương trình tốn THPT - Hệ thống hướng dẫn phương pháp giải tốn tìm modun số phức 1.4 Phương pháp nghiên cứu - Phương pháp nghiên cứu lí thuyết - Phương pháp nghiên cứu tài liệu sản phẩm hoạt động sư phạm - Phương pháp tổng hợp - Phương pháp thống kê, so sánh NỘI DUNG 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Những kiến thức : Định nghĩa elíp: Cho hai điểm cố định với độ dài Tập hợp các điểm M mặt phẳng thoả mãn: ( với a> c >0 ) gọi e líp Hình dạng download by : skknchat@gmail.com Mối quan hệ: Định nghĩa mô đun số phức và ý nghĩa hình học Cho số phức mô đun của ký hiệu là được tính bởi Mỗi số phức được biểu diễn bởi điểm M(a;b) Mỗi số phức có thể coi là một vecto Tổng (hiệu) hai số phức bằng tổng (hiệu) hai vecto ; ; ; ; Cho M, N lần lượt biểu diễn hai số phức Khi đó : * là véc tơ biểu diễn và * là véc tơ biểu diễn và thì là các véc tơ biểu diễn y P N M O Bất đẳng thức modun * dấu “ = ” xảy * dấu “ = ” xảy M biểu diễn và I biểu diễn thì kính R M biểu diễn , biểu diễn và đường trung trực x (k>0) hay ngược hướng (k>0) hay hướng thuộc đường tròn tâm O bán biểu diễn thì download by : skknchat@gmail.com thuộc 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.2.1 Đối với giáo viên - Trước số phức chương trình thi tớt nghiệp và tủn sinh đại học dừng lại mức độ bản( nhận biết, thơng hiểu) Vì việc giảng dạy nghiên cứu giáo viên dừng lại mức độ cụ thể giúp em làm tốt phần kiến thức - Hiện với đề án thi giáo dục Thông qua đề thi trung học phổ thông quốc gia năm 2017 , đề minh họa Bộ đưa đề thi thử sở, trường, câu hỏi phần số phức xuất nhiều Đặc biệt câu khó, khó lạ ( mức độ vận dụng cao) mà trước chưa xuất xuất tương đối nhiều Tuy nhiên lại chưa có nhiều tài liệu nghiên cứu vấn đề nguồn tham khảo giáo viên cịn hạn chế - Các giáo viên chưa có nhiều thời gian nghiên cứu dạng tốn mới, chưa có nhiều kinh nghiệm giảng dạy định hướng cho học sinh giải tốn số phức khó 2.2.2 Đối với học sinh - Với lớp toán vận dụng , vận dụng cao em thường thụ động việc tiếp cận phụ thuộc nhiều vào kiến thức giáo viên cung cấp chưa có ý thức tìm tịi, sáng tạo tìm niềm vui, hưng phấn giải toán - Số lượng tài liệu tham khảo cho em cịn - Việc thi trắc nghiệm địi hỏi học sinh khơng hiểu chất tốn mà cịn phải tìm cách giải nhanh để đạt kết tối đa Trước tình hình tơi muốn đưa ý tưởng giải tốn mơ đun số phức việc chủn sang bài toán hình học quen thuộc , giúp em phát triển tư kích thích ham học tập em 2.3 Giải pháp giải vấn đề 2.3.1 Sử dụng kiến thức về e líp tìm giá trị lớn nhất , nhỏ nhất của mô đun số phức Bài toán số phức : Cho số phức z thoả mãn với Tìm GTLN, GTNN của Sự tương ứng ở gồm: * M là điểm biểu diễn z , tương ứng là điểm biểu diễn Khi *A là điểm biểu diễn Ta có Chuyển hóa thành tốn hình học Bài toán hình học: Cho M chuyển động Elip (E) và một điểm A cố định Tìm GTLN, GTNN của AM Ta xét toán trường hợp đặc biệt Bài toán 1: Phương trình (E) dạng chính tắc Cho sớ phức z thoả mãn đứng).Tìm GTLN, GTNN của (Elíp ngang) hoặc download by : skknchat@gmail.com (Elip Giải - Tính - Lập phương trình dạng chính tắc (E) với với Hoặc - Rút y theo dạng: đối với tương tự đối với - Thay vào P ta được với - Dùng chức TABLE của máy tính Casio phương án trắc nghiệm tìm GTLN, GTNN của hàm P2 từ đó có P Ví dụ Cho số phức z thoả mãn Tìm GTLN, GTNN của Giải - Có a = 3, c = -Phương trình chính tắc Elip - Vậy - Bấm TABLE các hàm vơi được GTLN, GTNN của hàm P2 Bài toán Elip không dạng chính tắc A là trung điểm của tức A là tâm của Elip Cho số phức z thoả mãn với Tìm GTLN, GTNN của Với đặc điểm nhận dạng Phương pháp - Tính - Tính - Vì A là tâm của Elip và M di chuyển Elip nên: + AM lớn nhất bằng a hay max P = a + AM nhỏ nhất bằng b hay P= b Ví dụ 2: Cho số phức z thoả mãn Tìm giá trị lớn nhất, giá trị nhỏ nhất của Giải - Ta có Ta chỉ cần tìm GTLN, GTNN của - Ta thấy và - Tính Do đó Vậy - Vậy max P’= 4; P’= , đó max P= 8; P= Bài toán Elip không có dạng chính tắc, A không là trung điểm của A nằm các trục của Elip Bài toán 3.1: A nằm trục Elip lớn và ngoài - Dấu hiệu nhận biết: download by : skknchat@gmail.com - Thì max P= ; P= Bài toán 3.2: A nằm trục lớn và ở phía Elip - Dấu hiệu nhận biết: - Thì max P= Còn GTNN không xác định nhanh được Bài toán 3.3: A nằm trục nhỏ (bất kể hay ngoài) Elip - Dấu hiệu nhận biết: - Thì P= Còn GTLN không xác định nhanh được Ví dụ Cho số phức z thoả mãn Giải Tìm giá trị lớn nhất, giá trị nhỏ nhất của I là trung điểm của thì Có Mặt khác Vậy A thuộc Vậy A nằm ngoài Elip Vậy max P= AI+ a = ; P= AI- a = Tổng kết bài toán Khi thấy giả thiết là Elip không chính tắc Tìm Min, Max của +) Nếu thấy với : Tính và và thì max P= a; P= b +) Nếu thấy thì max P= +) Nếu thấy thì max P= +) Nếu thấy ; P= thì P= 2.3.2 Sử dụng kiến thức về véc tơ tìm giá trị lớn nhất , nhỏ nhất của mô đun số phức Bài toán Cho Tính Phương pháp Gọi là các véc tơ biểu diễn , Khai triển: Bây khử xong Nhân (1) với ab nhân (2) với cd trừ đi, được: download by : skknchat@gmail.com Đặc biệt a = b =1 c = - d =1, ta có cơng thức hình bình hành (Tổng bình phương hai đường chéo bằng tổng bình phương các cạnh ) Ví dụ 1: Cho số phức thỏa mãn tính Giải Coi số phức , vector ta có Nhân (1) với cộng với (2) được: Ví dụ 2: Cho hai số phức , thỏa mãn Tìm GTLN Giải Các số phức , có vec tơ đại diện là Ta có Cộng (1) với (2) được: Mặt khác, theo bất đẳng thức BNC, ta có Vậy Ví dụ 3: : Cho hai số phức , thỏa mãn Giải Hướng dẫn Coi số phức , vector ta có Tìm GTLN nhân (1) với nhân (2) với cộng lại ta có: Áp dụng bất đẳng thức BNC, ta có Đáp số: Ví dụ Cho bốn sớ phức a, b, c, z thoả mãn Tính mơđun số phức *) Gọi Gọi hai nghiệm phương trình vector đại diện Từ (1) Ví dụ 5: Cho sớ phức thoả mãn Tìm giá trị lớn nhất của biểu thức download by : skknchat@gmail.com Giải: Gọi là các véc tơ đại diện Khi đó gọi là véc tơ đại diện và cùng phương với gọi là véc tơ đại diện và cùng phương với Mà Vậy Ví dụ 6: Cho ba số phức thoả mãn Tính giá trị nhỏ nhất của biểu thức Giải: Gọi A, B, C là các số phức biểu diễn Vậy R = hay tam giác ABC đều nội tiếp đường tròn bán kính 2.3.3 Sử dụng kiến thức về đường tròn , đường thẳng tìm giá trị lớn nhất , nhỏ nhất của mô đun số phức Bài toán 1: Cho số phức z thỏa mãn Tìm GTLN, GTNN Bài toán hình học: Gọi M điểm biểu diễn z, có Với I biểu diễn R Vậy M chuyển động đường trịn tâm I bán kính R Gọi A điểm biểu diễn thì, tốn trở thành: “ ChoM di chuyển đường tròn tâm I A điểm cố định Tìm GTLN, GTNN AM ” Nhìn vào hình vẽ ta thấy A M I M R download by : skknchat@gmail.com Chú ý: Khơng phải phương trình đường trịn dạng mà dạng với Do để kiểm tra điều kiện giả thiết phương trình đường trịn hay phương trình đường thẳng trường hợp cách tốt gọi z = x +yi thay vào giả thiết để biết (x; y) thỏa mãn phương trình Ví dụ 1: Cho sớ phức z thoả mãn Giải: Viết T dạng Vậy = AI Ví dụ 2: Cho sớ phức z thoả mãn Giải: Viết T dạng Vậy Tìm GTLN, GTNN thay vào phương trình ta Tìm GTLN, GTNN thay vào ta Ví dụ 3: Cho sớ phức z thoả mãn Tìm GTLN, GTNN Giải: Gọi z = x +yi , ( ) M(x;y) biểu diễn z Vậy M đường trịn tâm I Có Vậy bán kính R với A(-1;-2) Bài toán 2: Cho số phức thỏa mãn Tìm GTLN biết Bài toán hình học: Cho điểm M chuyển động đường trịn tâm I bán kính R Cho A, B điểm cố định thỏa mãn I nằm đoạn thẳng AB Tìm giá trị lớn P = aMA+bMB (khi I trung điểm AB hay I nằm đường trung trực của AB) Ta có với J là trung điểm AB Do đó (MA+MB) đạt giá trị lớn nhất MJ lớn nhất hay download by : skknchat@gmail.com A J M I B Ví dụ 1:(Đề minh hoạ BGD- 2018): Xét các số phức thoả mãn Tính P = a+ b đạt giá trị lớn nhất Giải Gọi M(a;b), A(-1;3), B(1;-1) tâm I(4;3) Gọi J là trung điểm AB J(0;1) IJ là trung trực của AB Bài toán trở thành: Tìm (1) Sao cho (MA+MB) đạt giá trị lớn nhất Ta có Do đó (MA+MB) đạt giá trị lớn nhất MJ lớn nhất hay Phương trình (IJ): x -2y +2 = (2) Từ (1) và (2) M(4;6) hoặc M(2;2) (kiểm tra loại bỏ) Vậy P = a+ b=10 Ví dụ 2: Cho số phức z thoả mãn Tìm giá trị lớn nhất của Giải Ta có tâm I(1;0) của đường trịn , bán kính Điểm A B ứng với số phức I trung điểm AB max T = MA + MB = Ví dụ 3: ( Sở GD ĐT Bắc Ninh) Cho số phức thỏa mãn diều kiện Giá trị lớn biểu thức Giải: Ta có: , Chú ý : Trong trường hợp I không phải trung điểm AB hay I không nằm đường trung trực của AB ta dùng tính chất mơ đun số phức để giải toán Ta có: Với véc tơ biểu diễn véc tơ biểu diễn Nhân (2) với k cộng với (1) ta được: (không đổi) Áp dụng bất đẳng thức BNC cho ta có download by : skknchat@gmail.com với lưu ý Ví dụ minh hoạ: Ví dụ 4: Cho sớ phức z thoả mãn Tìm giá trị lớn nhất của Giải: Ta có tâm I đường trịn giả thiết với số phức Dễ thấy điểm AB Ta có Với véc tơ biểu diễn cộng (1) với (2) ta được: bán kính Điểm A B ứng Vậy chí I trung véc tơ biểu diễn (không đổi) Áp dụng bất đẳng thức BNC Ví dụ 5: Cho sớ phức z thoả mãn Giải:Ta có Tìm giá trị lớn nhất của Với véc tơ biểu diễn véc tơ biểu diễn Nhân (1) với cộng với (2) ta được: (không đổi) Áp dụng bất đẳng thức BNC Bài toán 3:Cho hai số phức thỏa mãn với cho trước Tìm GTNN Bài toán hình học: Gọi M, N điểm biểu diễn Giả thiết tương đương với M thuộc đường tròn tâm I bán kính R ( gọi đường trịn (C)) Giả thiết tương đương N thuộc đường thẳng (d) Bài toán trở thành tìm M thuộc (C) N thuộc (d) cho T=MN ngắn Từ hình vẽ ta thấy GTNN MN Vậy I M N d download by : skknchat@gmail.com Ví dụ 1: Cho hai số phức thỏa mãn Tìm giá trị nhỏ nhất của Giải: Gọi M, N điểm biểu diễn Giả thiết đường trịn tâm I(-4;3) bán kính R=2 Giả thiết thuộc đường thẳng (d): 3x-5y+4=0 tương đương với M thuộc tương đương N Vậy Ví dụ Đề thi THPT Quốc Gia 2017-2018 Gọi S là tập hợp tất cả các giá trị của tham số m để tồn tại nhất số phức z thoả mãn và Tìm số phần tử của S Giải: Gọi z = x+yi Từ (C1) Từ (C2) Để tồn tại nhất một số phức thì (C1) (C2) tiếp xúc ngoài hoặc tiếp xúc Bài toán 4Cho số phức z thỏa mãn Vậy Tìm GTLN, GTNN Bài toán hình học: Điều kiện thực chất phương trình đường thẳng Nếu ta gọi M điểm biểu diễn z, A điểm biểu diễn z1 B điểm biểu diễn z2 giả thiết tương đương với MA=MB hay M nằm đường trung trực AB Gọi I điểm biểu diễn z0 T= IM Vậy IM nhỏ M hình chiếu vng góc I d Giá trị nhỏ minT= d(I,d) Lưu ý: Khơng phải phương trình đường thẳng có dạng , gặp giả thiết lạ, cách tốt để nhận biết giả thiết đường thẳng hay đường tròn gọi z = x +yi thay vào phương trình A I M B Ví dụ 1: Cho sớ phức z thoả mãn Tìm GTNN Giải Gọi z = x +yi , ( ) M(x;y) biểu diễn z Từ Vậy M di chuyển (d) Có Ví dụ 2: Cho số phức z thoả mãn Giải =OM nhỏ số thực Tìm GTNN download by : skknchat@gmail.com Gọi z = x +yi , ( ) Ta có Tích có phần ảo Phần ảo khơng (d) Vậy gọi M điểm biểu diễn z M chạy đường thẳng (d) Gọi A(1;-1) điểm biểu diễn -1+i T = AM Giá trị T nhỏ khoảng cách từ A đến (d) Vậy Bài tập vận dụng cao Câu 1:Cho số phức z thoả mãn w = z+1+i A Tìm môđun lớn w biết B C D Câu 2: Cho số phức z thoả mãn thỏa mãn điều kiện Oxy tập hợp điểm biểu diễn số phức w = 2z+1- i A B Câu 3: Cho số phức z thoả mãn nhỏ Khi M+m A B Câu 4: Cho sớ phức z thoả mãn C A C A Đặt Câu 7: Cho số phức z thoả mãn 2i A B Câu 8: Cho số phức z thoả mãn A B Câu 9: Cho số phức z thoả mãn 1+i B Câu10: Cho số phức z thoả mãn z+2i A B D C A D Mệnh đề sau ? B Câu 6: Cho số phức z thoả mãn A D Gọi M, m giá trị lớn C Giá trị lớn B Câu 5: Cho số phức z thoả mãn Trong mặt phẳng D Tìm tích giá trị lớn nhỏ B C D Tìm mơđun lớn số phức z C Giá trị lớn D C D .Tìm mơđun nhỏ số phức z C D Tìm mơđun nhỏ số phức C download by : skknchat@gmail.com D Câu11: Cho số phức z thoả mãn biểu thức đạt giá trị lớn Tìm mơđun số phức z+i A B C D Câu 12: Gọi điểm A, B biểu diễn số phức ( ) mặt phẳng tọa độ (A, B, C A’, B’, C’ không thẳng hàng) Với O gốc tọa độ, khẳng định sau đúng? A Tam giác OAB B Tam giác OAB vuông cân O C Tam giác OAB vuông cân B D Diện tích tam giác OAB khơng đổi Câu13:Cho bốn sớ phức a, b, c, z thoả mãn Gọi Tính môđun số phức A B C D Câu14: Gọi S tập hợp số phức z thoả mãn Kí hiệu hai số phức thuộc S số phức có mơ đun nhỏ lớn tính giá trị biểu thức A B C D Câu15: Gọi z sớ phức có phần thực lớn thoả mãn Sao cho biểu thức đạt giá trị nhỏ Tìm phần thực số phức z A B C Câu16: Cho số phức z thoả mãn Tổng giá trị lớn z giá trị nhỏ số phức z là: A B Câu17: Cho số phức z thoả mãn môđun số phức C D Kí hiệu A B Câu18: Trong sớ phức z thoả mãn A B Câu19: Cho số phức z thoả mãn A B C Câu 20: Cho số phức z thoả mãn A B Câu 21: Tìm giá trị lớn D C Tính D Tìm số phức z mơđun nhỏ C D Giá trị nhỏ D Giá trị lớn C D biết A B C D Câu 22: Cho số phức z thoả mãn Tìm giá trị lớn A B C D Câu 23: Xác định số phức z thoả mãn mà đạt giá trị lớn A B C D Câu 24: Cho số phức z thoả mãn A B C D Câu 25: Cho số phức z thoả mãn Biểu thức có giá trị lớn là: A B C D download by : skknchat@gmail.com Câu 26: Cho số phức z thoả mãn m là: A B Đặt C Câu 27: Cho số phức z thoả mãn nhỏ Tính M+m ? A B Câu 28: Cho số phức z thoả mãn A B Câu 29: Cho số phức z thoả mãn A B Câu 30: Cho sớ phức z thoả mãn Tìm giá trị lớn D Gọi M, m giá trị lớn C D Tìm giá trị lớn C D Tìm giá trị lớn C D Tìm giá trị lớn A B C D Câu 31: Cho số phức z thoả mãn Gọi M, m giá trị lớn nhỏ Tính mơđun sớ phức w = M + mi A B C D Câu 32: Cho số phức z thoả mãn A Tìm mơđun lớn số phức z B C D Câu 33: Cho số phức z, w thoả mãn A Giá trị nhỏ B C D Câu 34: Cho số phức z thoả mãn lớn nhỏ A B Gọi M, m giá trị Tính M.m C D Câu 35: Cho sớ phức z thoả mãn Biết biểu thức đạt giá trị nhỏ tại z = a +bi ( A P= - B C P = - Câu 36: Cho số phức z thoả mãn nhỏ Tính M+m ? A C D Câu 37: Cho số phức z thoả mãn lớn nhỏ Tính M+m ? B B 15 Gọi M, m giá trị C D Câu 38: Cho số phức z thoả mãn nhỏ Tính M + m ? A 4034 B 2017 C Câu 39: Cho số phức z thoả mãn lớn nhỏ Tính M2+m2 ? A 11 D Gọi M, m giá trị lớn B A ) Tính P = a-4b C Gọi M, m giá trị lớn D Gọi M, m giá trị D download by : skknchat@gmail.com Câu 40: Cho số phức z thoả mãn lớn nhỏ Tính M+m ? A B C Gọi M, m giá trị D 2.4 Hiệu sáng kiến kinh nghiệm Việc áp dụng sáng kiến kinh nghiệm vào trình nghiên cứu giảng dạy mang lại kết tích cực - Đối với thân sau nghiên cứu kĩ kiến thức liên quan phần số phức, vận dụng hình học vào giải quyết các toán số phức mức độ vận dụng cao , giúp tơi có kiến thức kinh nghiệm việc giảng dạy cho em Từ định hướng cho em cách phát tư việc giải toán mức độ vận dụng cao - Với đồng nghiệp, việc sử dụng tài liệu nhỏ tài liệu để tham khảo hướng dẫn cho học sinh làm toán - Đối với học sinh sau áp dụng cách tiếp cận việc giải toán giúp học sinh phát triển tư Học sinh có khả định hướng cách làm với dạng tập khó khác Học sinh tự tin trình làm bài, tạo hứng thú cho em trình học tập Việc làm tập số phức nói chung số phức mức độ vận dụng cao em trở nên nhanh chóng xác Cụ thể tơi cho em số kiểm tra phần số phức trình trước sau áp dụng phương pháp giải tập số phức, kết sau: Kết trước học phương pháp mới Lớp 12C1 Chỉ Chỉ Chỉ Đúng câu Tổng câu câu câu Số lượng 25hs – 52% 15hs – 31% 8hs – 17% – 0% 48 Kết sau học phương pháp mới Lớp 12C1 Chỉ Chỉ Chỉ Đúng câu Tổng câu câu câu Số lượng 5hs – 10% 15hs – 31% 15hs – 31% 13hs – 28% 48 So sánh kết thu từ hai bảng ta thấy sau áp dụng phương pháp giải sớ phức bằng hình học học sinh làm tốt khả tư phát triển KẾT LUẬN, KIẾN NGHỊ 3.1 Kết luận Qua việc vận dụng đề tài nghiên cứu vào trình giảng dạy học tập học sinh thu đươc kết tích cực bảng số liệu phân tích Đề tài giúp cho giáo viên nhiều việc truyền đạt tư tưởng, phương pháp kiến thức cho học sinh Bản thân học sinh giảng dạy thông qua đề tài giúp em phát triển tư duy, biết định hướng để giải toán Khơi dậy em niềm thích thú, ham học hỏi đặc biệt giúp em đạt hiệu cao làm tập thi THPT quốc gia 3.2 Kiến nghị Đối với sở giáo dục đào tạo Thanh Hóa: Thơng qua việc chấm sáng kiến kinh nghiệm hàng năm, lựa chọn đề tài có chất lượng cần phổ biến rộng rãi cho trường tỉnh để trường có điều kiện tương đồng triển khai áp download by : skknchat@gmail.com dụng hiệu Nên đưa SKKN có chất lượng vào mục “tài ngun” sở để giáo viên tồn tỉnh tham khảo cách rộng rãi Đối với trường THPT Hàm Rồng : Mỗi sáng kiến kinh nghiệm lựa chọn cần phổ biến rộng rãi phạm vi tổ, nhóm Cần có lưu thư viện để giáo viên học sinh tham khảo Đối với tổ chuyên môn: Cần đánh giá chi tiết mặt đạt được, hạn chế hướng phát triển đề tài cách chi tiết cụ thể để hoàn thiện sáng kiến Đối với đồng nghiệp: Trao đổi ý tưởng, kinh nghiệm hỗ trợ việc áp dụng rộng rãi sáng kiến lớp học Phản hồi mặt tích cực mặt hạn chế sáng kiến Đề tài nghiên cứu thời gian hạn chế, mong Hội đồng khoa học Sở giáo dục đào tạo Thanh Hóa nghiên cứu, góp ý bổ sung để sáng kiến hồn thiện XÁC NHẬN CỦA THỦ TRƯỞNG Thanh Hóa, ngày 16 tháng năm 2018 ĐƠN VỊ Tôi xin cam đoan sáng kiến kinh nghiệm tôi, không chép nội dung người khác Người viết sáng kiến Gv: LÊ MẠNH HÙNG TÀI LIỆU THAM KHẢO SGK giải tích 12 nâng cao – Nhà xuất giáo dục 2009 Sách tập 12 nâng cao – Nhà xuất giáo dục 2009 Đề minh họa lần 1, lần 2, lần giáo dục đào tạo năm học 2016-2017 download by : skknchat@gmail.com ... với số kinh nghiệm trình giảng dạy tham khảo số tài liệu, chọn đề tài ? ?ỨNG DỤNG HÌNH HỌC GIẢI NHANH MỘT SỐ BÀI TỐN VỀ MƠ ĐUN SỐ PHỨC Ở MỨC ĐỘ VẬN DỤNG CAO? ?? nhằm giúp em hiểu vận dụng kiến thức hình. .. làm tập, giải số toán số phức mức độ vận dụng cao cách xác nhanh chóng Từ kích thích khả tư duy, ham hiểu biết học sinh môn học 1.3 Đối tượng phạm vi nghiên cứu - Kiến thức chương số phức chương... tư Học sinh có khả định hướng cách làm với dạng tập khó khác Học sinh tự tin trình làm bài, tạo hứng thú cho em trình học tập Việc làm tập số phức nói chung số phức mức độ vận dụng cao em trở