The Choice of Coordination Number in d10 Complexes of Group 11 Metals
The Choice of Coordination Number in d10 Complexes of Group 11 Metals M Angels Carvajal, Juan J Novoa and Santiago Alvarez Supporting Information Structural Database Survey The structural data used for Figure were obtained through a systematic search for complexes of group 11 metals classified in the Cambridge Structural Database1 (CSD, version 5.23) as di-, tri- and tetracoordinate Only those structures that could be unambiguously identified as corresponding to oxidation state +1 were retained and structures presenting disorder or with agreement factors R in excess of 10 % were ruled out In the context of this work, the coordination number of a metal atom in a given crystal structure is the one that has been proposed by the authors of the crystallographic determination from a comparison of metal-ligand bond distances with the sum of atomic radii, as reflected in the CSD A breakdown of structures found in the CSD by metal and coordination number is presented in Table S1 In some cases (less than a 5% of the selected compounds) the assignment of coordination number to the metal atom is not straightforward, and the corresponding structures have been classified by us as “ambiguous” For instance, we assign an ambiguous coordination number two to those structures with bond angles of less than 140° Among "tricoordinate" complexes, we count as having an ambiguous coordination number those in which the metal atom is at least 0.6 Å above (or below) the plane formed by the three donor atoms Finally, ambiguous tetracoordinate structures are considered to be those with one bond angle smaller than 60° or with torsion angles between two L-M-L groups smaller than 45° For statistical purposes (as reflected in Figure 1), however, we have kept the coordination number assigned by the CSD, given the small proportion of ambiguous cases All (ambiguous) "dicoordinate" molecules with bond angles smaller than 147° are seen to have metal-ligand contacts at less than 2.8 Å (13 crystallographically independent molecules in compounds), mostly to sulfur or oxygen atoms, but also in one case6 to carbon atoms of a phenyl ring at 2.53, 2.91 and 2.96 Å, suggestive of a p-allylic coordination In all the ambiguous tricoordinate complexes the metal atom presents either one additional short contact to a donor atom, indicating effective tetracoordination, or one too long "bond distance" that should be considered nonbonding, indicating an effective coordination number of two Similarly, the ambiguous tetracoordinate complexes have either one long metal-ligand bond distance and bond angles consistent with tricoordination, or two long bond distances and a nearly linear arrangement of the other two ligands, indicative of effective dicoordination S1 Table S1 Distribution of d10 complexes of group 11 metals with different coordination numbers (CN) in the Cambridge Structural Database (version 5.23) Both the number of independent crystallographic data sets (molecules) and of crystal structure determinations (structures) are given Criteria for number of fragments with ambiguous coordination number are discussed in the computational section, but the corresponding structures are counted with the coordination number assigned in the CSD M CN Cu 319 185 818 462 16 1632 1127 186 310 225 332 246 13 669 467 28 1252 877 83 64 172 142 Ag Au molecules structures ambiguous S2 Table S2 Basis sets employed for the DFT calculations Polarizationa Atom Cu Ag Au Cl p p p d Diffuseb 0.052 s 0.00396 0.164 p 0.00240 d 0.03102 0.035 s 0.00347 0.105 p 0.00252 d 0.02108 0.034 s 0.00598 0.108 p 0.00279 d 0.01396 0.220 0.797 Br d 0.162 0.548 I d 0.105 0.334 N d 0.412 1.986 P d 0.153 0.537 a Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzi-Andzelm, E.; Sakai, Y.; Tatewaki, H Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, 1984 b Cu: Liu, X.-Y.; Mota, F.; Alemany, P.; Novoa, J J.; Alvarez, S Chem Commun 1998, 1149 Ag and Au: dividing by 10 the smallest exponent of the LanL2DZ basis set S3 Table S3 Interaction and formation energies (Eint and Ef) calculated for the family of reactions [CuL1L2] + L3 with and without (in parentheses) counterpoise correction for the basis set superposition error L1 L2 NH3 NH3 Cl- -126.3 (-142.1) -109.5 (-125.3) NH3 NH3 Br- -121.0 (-131.6) -104.2 (-114.8) NH3 NH3 I- -116.0 (-122.4) -99.2 (-105.5) NH3 NH3 NH3 -30.0 (-32.3) -13.7 (-16.0) PH3 PH3 PH3 -30.1 (-31.7) -17.9 (-19.4) NH3 Cl- NH3 -15.6 (-18.5) -0.2 (-3.1) NH3 Br- NH3 -16.1 (-18.7) -2.0 (-4.7) NH3 I- NH3 -16.3 (-18.8) -3.7 (-6.2) Cl- Cl- Cl- 47.1 (33.2) 71.2 (57.4) Br- Br- Br- 43.9 (33.3) 63.6 (53.0) I- I- 40.6 (34.2) 58.2 (51.8) Cl- Cl- NH3 -5.0 (-8.3) 17.6 (14.3) Br- Br- NH3 -6.8 (-9.7) 10.3 (7.4) I- NH3 -8.4 (-11.0) 7.0 (4.4) NH3 Cl- Cl- -35.2 (-50.9) -18.3 (-34.0) NH3 Br- Br- -33.2 (-43.9) -17.8 (-28.5) NH3 I- I- -31.6 (-38.0) -17.7 (-24.1) I- I- L3 Eint Ef S4 Table S4 Optimized bond distances (Å) for dicoordinate d10 [MAB] complexes and ranges of experimental values found in the CSD M-A M A B calcd exp M-B calcd exp A-M-B exp N, Z Cu Cl Cl 2.157 2.00 - 2.14 153-180 57, 71 Cu Br Br 2.303 2.19 - 2.29 154-180 18, 19 Cu I I 2.468 2.38 - 2.39 180 2, Cu NH3 NH3 1.942 1.80 - 2.11 152-180 92, 141 Cu 2.272 2.19 - 2.26 166-180 7, Cu PH3 PH3 NH3 Cl 1.959 1.80 - 1.94 2.098 2.08 - 2.16 159-180 9, 12 Cu NH3 Br 1.970 1.93 - 1.94 2.238 2.20 - 2.22 174 1, Cu NH3 I 1.983 Cu PH3 Cl 2.200 2.177 2.108 2.118 173 1, Cu PH3 Br 2.212 2.19 - 2.20 2.246 2.23 - 2.26 172-174 2, Cu PH3 I 2.225 2.188 2.409 2.418 171 1, Ag Cl Cl 2.401 2.30 - 2.48 164-180 5, Ag Br Br 2.537 2.45 179 1, Ag I I 2.696 Ag NH3 NH3 2.183 2.06 - 2.41 144-180 159, 229 Ag 2.474 2.36 - 2.46 145-180 26, 31 Ag PH3 PH3 NH3 Cl 2.214 2.08 - 2.16 2.31 174-177 2, Ag NH3 Br 2.233 2.461 Ag NH3 I 2.252 2.613 Ag PH3 Cl 2.406 2.37 - 2.38 2.335 2.34 - 2.45 148-175 3, Ag PH3 Br 2.425 2.374 2.467 2.448 174 Ag PH3 I 2.446 Au Cl Cl 2.347 2.09 - 2.30 176-180 21, 25 Ag Br Br 2.479 2.35 - 2.40 174-180 24, 24 Ag I I 2.635 2.24 - 2.75 176-180 20, 21 Ag I I 2.155 Au NH3 NH3 2.081 1.80 - 2.15 173-180 31, 51 Au 2.358 2.26 - 2.35 157-180 112, 142 Au PH3 PH3 NH3 Cl 2.117 1.98 - 2.10 2.278 2.24 - 2.27 177-179 6, Au NH3 Br 2.135 2.019 2.408 2.354 178 1, Au PH3 Cl 2.268 2.18 - 2.28 2.303 2.23 - 2.39 164-180 140, 209 Au PH3 Br 2.282 2.16 - 2.29 2.434 2.38 - 2.44 168-179 19, 28 Au PH3 I 2.299 2.399 2.327 2.621 2.560 180 2.587 (a) All calculated A-M-B bond angles are 180° within chemical accuracy (b) N is the number of crystalographically independent data sets and Z the number of crystal structure determinations S5 Table S5 Calculated bond distances (Å) and anglesg for tricoordinate d10 [MAB2] complexes and ranges of experimental values found in the Cambridge Structural Database (in parentheses) M-A M-B A B calcd exp Cu Cl Cl 2.363 2.10 - 2.39 120 16, 21 Cu Br Br 2.502 2.22 - 2.52 120 24, 29 Cu I I 2.668 2.54 - 2.18 120 24, 30 Cu NH3 NH3 2.077 1.91 - 2.09 120 81, 110 Cu 2.24 - 2.30 120 14, 23 Cu PH3 PH3 2.332 a, c Cl NH3 2.202 2.08 - 2.62 2.102 1.87 - 2.08 120 99-141 16, 20 Cu Br NH3 2.350 2.32 - 2.46 2.093 1.95 - 2.08 107 109-124 7, 10 Cu Br NH3a 2.340 Cu I NH3 2.505 105-128 6, Cu I NH3a 2.498 Cu Cl PH3 2.192 112-120 10, 10 Cu Cl PH3a 2.190 Cu Br PH3 2.329 110-117 3, Cu Br PH3 a 2.330 Cu I PH3 2.492 107-117 6, Cu I 2.490 Cu NH3 PH3a Cla, c 2.102 121-130 7, Cu NH3 Br d 2.338 Cu NH3 Br a 2.123 1.93 - 2.06 2.411 2.37 - 2.42 120 116-125 6, Cu NH3 I 2.251 1.97 - 2.21 2.540 2.54 - 2.59 103 111-121 8, 12 Cu NH3 Ia 2.119 Cu PH3 Cu PH3 Br Br a Cu PH3 Cu PH3 I Ia exp N, Z f M Cl a, c calcd A-M-B calcd exp 2.103 2.49 - 2.68 2.100 120 1.98 - 2.02 2.105 2.20 - 2.26 2.297 120 2.23 - 2.27 2.300 2.34 - 2.40 2.303 2.308 2.23 - 2.27 2.202 116 120 2.24 - 2.29 2.310 1.86 - 1.99 116 120 2.300 2.51 - 2.62 115 116 120 2.27 - 2.43 2.37 120 92, 110 2.574 120 2.242 2.16 - 2.21 2.263 2.24 - 2.36 120 121-132 19, 24 2.360 2.16 - 2.48 2.377 2.18 - 2.58 118 109-132 15, 16 2.53 - 2.58 104, 116 120-127 11, 13 2.250 2.354 2.410 2.20 - 2.26 2.270 2.56 120 Cu PH3 2.570 Ag NH3 NH3 2.351 2.09- 2.50 120 39, 60 Ag 2.576 2.44 - 2.54 120 23, 38 Ag PH3 PH3 Cl Cl 2.638 2.45 - 2.81 120 5, Ag Br Br 2.776 2.55 - 2.75 120 6, Ag I I 2.930 2.75 - 2.80 120 7, Ag Cl 2.434 2.49 - 2.53 120 1, Ag Br Ag I Ag Cl NH3a, c NH3a, c NH3a, c PH3d, e 2.414 120 2.32 - 2.33 2.567 2.413 120 2.713 2.417 120 2.362 2.427, 3.124 84, 171 S6 Cl PH3a 2.424 Ag Br 2.507 Ag Br PH3d, e PH3a 2.556 2.57 - 2.62 2.574 2.46 - 2.47 Ag I PH3 2.700 2.778 2.560 2.48 Ag I PH3a 2.709 2.583 120 Ag NH3 Cl a, c 2.482 2.520 120 Ag NH3 Bra, c 2.472 Ag Id, e Ag NH3 Ag NH3 Ia 2.49 - 2.71 2.567 2.42 - 2.50 2.456, 3.010 2.467 2.655 120 107-116 6, 115-118 2, 115 1, 102 1, 89, 164 2.500 120 08, 128 120 2.751 2.754 86, 108 2.466 2.807 120 Ag PH3 Cl a, c 2.541 2.35 - 2.36 2.509 2.55 - 2.60 120 132-140 4, Ag PH3 Br a, b 2.559 2.37 - 2.41 2.647 2.61 - 2.65 120 125-131 2, 2.581 2.42 - 2.43 2.801 2.764 120 120 2, I a, b Ag PH3 Au NH3 NH3a, c 2.298 Au PH3 PH3 Cl Cl Au 2.448 120 2.35 - 2.42 119 2.602 122 2.602 120 Au Cl Cla Au Br Br 2.726 120 Au I I 2.863 120 Au Cl NH3a, c 2.406 2.375 120 Au Br 2.527 2.380 120 Au I 2.713 2.417 120 Au Cl Au Br Au Br NH3a, c NH3a, c PH3a, c PH3d PH3a Au I Au I Au 2.421 2.44 - 2.96 2.601 2.414 2.30 - 2.33 2.40 120 27, 33 86-122 10, 12 96, 123 2.548 2.62 - 2.78 2.421 2.32 120 106-114 2, PH3 2.752 2.75 - 3.34 2.394 2.32 - 2.34 110 94-114 4, 2.629 2.427 120 NH3 PH3a Cla, c 2.549 2.474 120 Au NH3 Bra, c 2.523 2.603 120 Au NH3 Id, e 2.751 2.755 86, 108 2.506 2.748 120 Ia Au NH3 Au PH3 Cla, b 2.331 2.503 120 Au PH3 Bra, b 2.351 2.633 120 Au PH3 Ia, b 2.369 2.780 120 a ) bond angles frozen at 120°; b) optimization leads to dissociation of one ligand; c) optimization leads to dissociation of one ligand and formation of intermolecular hydrogen bonding; d) optimized structure is asymmetric with intramolecular hydrogen bonding; e) optimization leads to a tricoordinate complex with a large bond angle and one long metal-ligand distance f) N and Z are the number of crystal structure determinations and the number of crystallographically independent molecules from which the corresponding experimental values were taken, respectively g) Calculated data correspond to optimized structures except where otherwise specified S7 Table S6 Calculated bond distances (Å) and angles for tetracoordinate d10 [MA4], complexes and ranges of experimental values found in the Cambridge Structural Database N and Z are the number of crystal structure determinations and the number of crystallographically independent molecules from which the corresponding experimental values were taken, respectively Calculated data correspond to geometries with frozen tetrahedral bond angles except where otherwise specified M-A M A Cu Cl 2.596 2.35 - 2.42 9, Cu Br 2.764 2.31 - 2.57 8, Cu I a, b 2.948 2.65 - 2.72 15, 20 Cu NH3 2.168 1.96 - 2.16 282, 395 Cu PH3 2.368 2.24 - 2.58 38, 41 Ag Cl a 2.715 2.61 - 2.64 3, Ag Br 2.906 2.71 - 2.74 3, Ag I 3.168 2.83 - 2.91 14, 26 Ag NH3 2.451 2.23 - 2.49 62, 119 Ag PH3 2.645 2.45 - 2.67 23, 31 Au Cl a 2.863 Au Br a 2.805 Au I 2.897 Au Ia 3.011 Au NH3 a, c 2.425 Au PH3 2.506 a calcd exp N, Z (139°) D2d 2.36 - 2.61 24, 28 ) bond angles frozen at 109.47°; b) optimization leads to dissociation of one ligand; c) optimization leads to dissociation of one ligand and formation of intermolecular hydrogen bonding; d) optimized structure is asymmetric with intramolecular hydrogen bonding; e) optimization leads to a tricoordinate complex with a large bond angle and one long metal-ligand distance; f) A-M-B bond angle in [MAB3] complexes, X-M-X bond angle in [ML2X2] complexes; f) in [ML2X2] complexes S8 Table S7 Calculated bond distances (Å) and angles for tetracoordinate d10 [MAB3], complexes and ranges of experimental values found in the Cambridge Structural Database N and Z are the number of crystal structure determinations and the number of crystallographically independent molecules from which the corresponding experimental values were taken, respectively Calculated data correspond to geometries with frozen tetrahedral bond angles except where otherwise specified M-A M-B A-M-B M A B calcd exp calcd exp calcd exp N, Z Cu NH3 Cl a, b 2.167 1.99 2.458 2.46 112 1, Cu NH3 Br a, c 2.152 2.02 - 2.09 2.617 2.46 - 2.55 103-110 3, Cu NH3 I a, b 2.140 1.93 - 2.13 2.793 2.64 - 2.75 105-117 19, 36 Cu PH3 Cl a 2.236 2.18 - 2.22 2.437 2.38 - 2.44 112-117 5, Cu PH3 Cl d, e 2.367 Cu PH3 Br a 2.253 116-119 6, Cu PH3 Br d, e 2.352 Cu PH3 I 2.360 2.24 - 2.26 2.763 2.67 - 2.70 100.0 109-112 4, Cu Cl NH3 2.450 2.25 - 2.56 2.125 1.97 - 2.07 92 102-117 8, Cu Cl a NH3 2.280 Cu Br NH3 2.140 2.43 - 2.58 97 104-110 4, Cu Br a NH3 2.423 Cu I NH3 2.675 2.04 - 2.15 100 106-111 3, Cu I a NH3 2.584 Cu Cl PH3 2.284 2.26 - 2.36 102 98-111 17, 20 Cu Cl a PH3 2.261 Cu Br PH3 2.433 2.23 - 2.37 106 103-109 5, 10 Cu Br a PH3 2.410 Cu I PH3 2.611 2.26 - 2.36 106 103-113 6, Cu Ia PH3 2.578 2.352 Ag NH3 Cl a, c 2.527 2.722 Ag NH3 Br a, c 2.504 2.27 2.872 2.79 Ag NH3 I a, c 2.489 2.29 - 2.40 3.032 2.85 - 2.92 106-113 3, Ag PH3 Cl a, b 2.565 2.36 - 2.41 2.693 2.62 - 2.71 116-134 6, 13 Ag PH3 Br a, c 2.589 2.38 - 2.43 2.844 2.73 - 2.89 116-125 7, 12 Ag PH3 I a, b 2.612 2.43 - 2.47 3.009 2.88 - 2.94 110-118 5, Ag Cl a NH3 2.499 2.437 2.15 - 2.18 2.592 83, 108 2.52 - 2.56 2.568 92-105 2.194 1.98 - 2.03 2.543 2.191 2.68 - 2.71 2.156 2.188 2.28 - 2.90 2.337 2.351 2.44 - 2.53 2.337 2.350 2.61 - 2.69 2.336 1, 2.508 S9 Ag Cl e NH3 2.706 2.417 Ag Br a, c NH3 2.636 2.505 Ag I a, c NH3 2.788 2.503 Ag Cl PH3 2.507 Ag Cl a PH3 2.481 Ag Br PH3 2.640 Ag Br a PH3 2.620 Ag I PH3 2.786 Ag Ia PH3 2.778 2.656 Au NH3 Cl a, b 2.681 2.679 Au NH3 Br a, b 2.625 2.815 Au NH3 I a, b 2.583 2.963 Au PH3 Cl a, c 2.330 2.710 Au PH3 Br a, c 2.349 2.850 Au PH3 I a, b 2.373 3.003 Au Cl a, c NH3 2.464 2.531 Au Br a, c NH3 2.527 2.531 Au I a, c NH3 2.726 2.534 Au Cl PH3 2.585 Au Cl a PH3 2.501 2.496 110 Au Br PH3 2.759 2.45 96 Au Br a PH3 2.636 2.498 110 Au I PH3 2.894 Au Ia PH3 2.788 a 2.47 - 2.59 2.625 83 2.49 - 2.57 103-123 5, 2.652 2.67 - 2.70 2.632 2.49 - 2.55 101 104-110 2, 2.48 - 2.63 103 104-126 4, 2.37 - 2.41 99 91-118 5, 98 1, 2.65 2.69 - 2.89 2.51 - 3.01 2.913 643 2.448 2.46 2.502 2.334 98 110 ) bond angles frozen at 109.47°; b) optimization leads to dissociation of one ligand; c) optimization leads to dissociation of one ligand and formation of intermolecular hydrogen bonding; d) optimized structure is asymmetric with intramolecular hydrogen bonding; e) optimization leads to a tricoordinate complex with a large bond angle and one long metal-ligand distance; f) A-M-B bond angle in [MAB3] complexes, X-M-X bond angle in [ML2X2] complexes; f) in [ML2X2] complexes S10 Table S8 Calculated bond distances (Å) and angles for tetracoordinate d10 [MA2B2], complexes and ranges of experimental values found in the Cambridge Structural Database N and Z are the number of crystal structure determinations and the number of crystallographically independent molecules from which the corresponding experimental values were taken, respectively Calculated data correspond to geometries with frozen tetrahedral bond angles except where otherwise specified M-A M A B M-B calcd exp calcd exp 1.94 - 2.11 2.357 2.33 - 2.62 A-M-A calcd exp N, Z Cu Cl a, c NH3 2.204 Cu Br a NH3 2.183 Cu Br d NH3 2.221 1.97 - 2.12 2.54 2.41 - 2.62 138 Cu I NH3 2.221 2.04 - 2.07 2.666 Cu Ia NH3 2.177 Cu Cl PH3 2.359 Cu Cl a PH3 2.315 Cu Br PH3 2.351 2.24 - 2.26 Cu I PH3 2.346 2.24 - 2.29 Cu Ia PH3 2.327 Ag Cla, c NH3 2.546 Ag Br a, c NH3 2.531 2.737 Ag Ia NH3 2.521 2.894 Ag I d, e NH3 2.712 2.830 Ag 2.641 2.43 - 2.52 2.567 2.60 - 2.76 110 74-103 12, 18 Ag Cl a, b PH3 Br a, c PH3 2.647 2.42 - 2.50 2.712 2.74 - 2.84 110 91-101 5, 10 Ag I a, b PH3 2.656 2.46 - 2.55 2.872 2.88 - 2.90 110 80-89 2, Au Cl a, b NH3 2.686 2.544 Au Br a, b NH3 2.645 2.676 Au I a, b NH3 2.600 2.826 Au 2.453 2.296 2.582 3.026 110 88 1, Au Cl a, c PH3 Br a, c PH3 2.463 2.299 2.718 3.117 110 92 1, Au I a, c 2.473 a PH3 98-107 11, 12 95-109 17, 19 2.66 - 2.71 140 100-109 6, 2.32 - 2.55 130 87-104 17, 22 2.483 2.54 - 2.64 130 89-108 6, 11 2.664 2.66 - 2.77 129 97-109 11, 16 2.506 2.677 2.22 - 2.29 2.331 2.334 2.659 2.367 2.593 2.596 107 1, 156 2.871 ) bond angles frozen at 109.47°; b) optimization leads to dissociation of one ligand; c) optimization leads to dissociation of one ligand and formation of intermolecular hydrogen bonding; d) optimized structure is asymmetric with intramolecular hydrogen bonding; e) optimization leads to a tricoordinate complex with a large bond angle and one long metal-ligand distance; f) A-M-B bond angle in [MAB3] complexes, X-M-X bond angle in [ML2X2] complexes; f) in [ML2X2] complexes S11 Table S9 Optimized geometries for [MCl(EMe3)2] complexes, compared to those of the unsubstituted [MCl(EH3)2] analogues (M = Cu, Ag or Au; E = N or P) M-L M-X Compd calcd exp calcd exp X-M-L [CuCl(NMe3)2] 2.148 1.87 - 2.08 2.208 2.11 - 2.56 108, 129 [CuCl(NH3)2] a 2.102 [CuCl(PMe3)2] 2.281 [CuCl(PH3)2] 2.300 [AgCl(PMe3)2] 2.480 [AgCl(PH3)2] a 2.567 [AuCl(PMe3)2] 2.353 [AuCl(PH3)2] a 2.414 a) 2.202 2.23 - 2.27 2.252 120 2.20 - 2.26 2.188 2.42 - 2.50 2.579 116 2.49- 2.71 2.424 2.30 - 2.33 2.809 2.421 116, 104 96 120 2.44 - 2.96 89 120 bond angles frozen at 120° S12 Table S10 Formation energies of tricoordinate complexes calculated in the gas phase and considering a dielectric environment (CPCM approach) with bond angles frozen at 120° Values given in parentheses correspond to optimized geometries (Table 2) X Ef (gas phase) Ef (water) Ef (CH2Cl2) [Cu(NH3)2]+ + NH3 -16.0 -5.4 -8.7 [Cu(PH3)2]+ + PH3 -19.4 -12.6 -16.2 Cl -3.1 -3.1 -2.6 Br -4.7 (-5.9) -4.4 (-2.9) -4.2 (-3.3) I -6.2 (-7.3) -5.6 (-4.8) -5.5 (-5.0) Cl -6.9 (-7.4) -5.9 (-5.5) -7.2 (-7.3) Br -7.5 (-8.2) -6.5 (-6.2) -7.9 (-8.0) I -8.3 (-8.3) -7.0 (-7.0) -8.4 (-8.7) [CuX(NH3)] + NH3 [CuX(PH3)] + PH3 [Cu(NH3)2]+ + X- [CuX(NH3)] + X- [CuX2]- + NH3 [CuX2]- + X- [Cu(PH3)2]+ + X- [CuX(PH3)] + X- Cl -125.3 -4.9 -26.9 Br -114.8 (-116.7) 0.63 (2.2) -19.9 (-19.0) I -105.5 (-106.7) 2.3 (3.1) -16.8 (-16.3) Cl -34.0 -5.5 -11.9 Br -28.5 -1.3 -7.5 I -24.1 (-28.6) 0.5 (1.8) -4.9 (-5.8) Cl 14.3 -2.1 3.6 Br 7.4 -4.0 0.9 I 4.4 (-0.1) -4.8 (-3.2) 0.1 (-0.8) Cl 57.4 -2.4 2.4 Br 53.0 -0.3 4.8 I 51.8 2.5 8.2 Cl -142.2 (-142.7) -23.6 (-23.3) -47.9 (-48.0) Br -130.7 (-131.3) -17.0 (-16.8) -39.7 (-39.8) I -120.3 (-120.3) -14.4 (-14.4) -35.7 (-35.9) Cl -44.4 -12.9 -20.9 Br -37.2 (-39.1) -7.9 (-6.8) -15.4 (-15.4) I -31.2 (-33.0) -5.9 (-5.9) -12.2 (-12.8) S13 [CuX2]- + PH3 Cl 7.3 -0.7 0.9 Br 2.3 (0.4) -1.6 (-0.5) -0.6 (-0.6) I 1.3 (-0.6) -1.4 (-1.5) -0.6 (-1.2) S14 Table S11 Calculated bending and stretching energies (kcal/mol) for the [MAB] complexes at fixed bond angles of 120° in a tricoordinate complex Of the two values of Estr given, the first one corresponds to bond length relaxation after bending, the second one to the same degree of bond stretching prior to bending A B Cu Ag Au Ebend Estr Ebend Estr Ebend Estr NH3 NH3 17.5 -0.7 / -1.2 13.2 -0.7 / -1.7 34.1 -0.3 / -1.6 PH3 PH3 11.0 +0.6 / -1.2 10.7 +0.1 / -1.7 22.3 0.6 / -0.4 Cl NH3 15.7 +1.2 / -0.4 12.5 +0.6 / -1.2 28.0 +1.3 / -2.3 Br NH3 14.3 +1.1 / -0.4 11.5 +0.6 / -0.9 25.0 +1.0 / -2.1 I NH3 12.8 +0.6 / -0.3 10.5 +0.6 / -0.7 22.8 +0.3 / -2.2 Cl PH3 12.9 +1.6 / +0.1 12.4 +0.6 / -0.9 24.9 +0.8 / -0.5 Br PH3 12.0 +1.4 / 0.0 11.5 +0.6 / -0.7 22.7 +0.8 / -0.4 I PH3 10.8 +1.4 / +0.1 10.6 +0.7 / -0.6 20.8 +0.8 / -0.3 Cl Cl 22.3 +1.9 / -0.1 16.5 +2.8 / -0.5 25.6 +3.5 / -0.8 Br Br 16.8 +2.9 / 0.0 15.0 +2.6 / -0.4 22.4 +3.0 / -0.6 I I 15.0 +2.6 / +0.1 13.8 2.4 / -0.3 19.9 +2.4 / -0.5 S15 Table S12 Calculated pyramidalization energy for [MABC] trigonal complexes to tetrahedral angles (Epyr) and stretching energies for the relaxation of bond distances of the [MABC] fragment in tetrahedral complexes (Estr, first value corresponds to the maximum value in compounds resulting from the addtion of a neutral ligand, the value in parenthesis for compounds resulting from addition of a halide) All values in kcal/mol A B C Cu Ag Epyr Au Epyr |Estr| |Estr| Epyr |Estr| NH3 NH3 NH3 8.7 0.2 (0.8) 5.6 0.2 (1.3) 11.7 0.0 (3.6) PH3 PH3 PH3 8.7 0.2 (0.6) 6.9 0.2 (0.4) 14.8 0.8 (0.4) Cl NH3 NH3 7.5 0.3 (1.8) 4.4 0.2 (2.0) 8.7 0.1 (3.8) Br NH3 NH3 7.2 0.3 (1.3) 4.4 0.2 (1.8) 8.5 0.1 (3.0) I NH3 NH3 7.0 0.2 (1.2) 4.5 0.2 (1.6) 8.3 0.0 (2.0) Cl PH3 PH3 7.9 0.1 (1.6) 5.8 0.2 (1.0) 12.7 0.2 (1.2) Br PH3 PH3 7.5 0.1 (1.5) 5.6 0.1 (1.2) 12.3 0.2 (1.1) I PH3 PH3 7.3 0.1 (1.3) 5.5 0.1 (1.1) 11.9 0.2 (1.0) Cl Cl NH3 8.5 0.4 (3.0) 5.8 0.4 (3.3) 8.2 0.2 (3.9) Br Br NH3 8.2 0.0 (2.9) 5.9 0.3 (3.0) 8.3 0.1 (3.4) I I NH3 7.9 0.0 (2.7) 6.0 0.1 (2.6) 8.4 0.3 (2.8) Cl Cl PH3 9.5 0.2 (2.9) 6.8 0.1 (2.7) 11.6 0.3 (2.8) Br Br PH3 9.0 0.2 (2.6) 6.7 0.0 (2.5) 11.1 0.2 (2.5) I I PH3 8.5 0.1 (2.4) 6.5 0.0 (2.4) 10.9 0.1 (2.1) Cl Cl Cl 12.2 0.6 (5.2) 10.0 0.3 (0.5) 10.7 0.8 (5.6) Br Br Br 12.0 0.6 (5.3) 9.8 0.5 (1.1) 10.7 0.8 (0.1) I I I 11.5 0.7 (5.0) 9.6 0.4 (3.1) 10.9 0.7 (0.9) S16 Table S13 Optimized metal-ligand bond distances in homoleptic [MLn]+ complexes as a function of the coordination number (Å) L M ML2 ML3 NH3 Cu 1.942 2.077 2.168 Ag 2.183 2.351 2.451 Au 2.081 2.298 2.425 Cu 2.272 2.332 2.368 Ag 2.474 2.576 2.645 Au 2.358 2.448 2.506 Cu 2.157 2.368 2.596 Ag 2.401 2.638 2.715 Au 2.347 2.602 2.863 Cu 2.303 2.502 2.764 Ag 2.537 2.776 2.906 Au 2.479 2.726 2.805 Cu 2.468 2.668 2.948 Ag 2.696 2.930 3.168 Au 2.635 2.863 3.011 PH3 Cl- Br- I- ML4 S17 Table S14 Ranges of calculated and experimental metal-ligand bond distances in [MABn-1] complexes (n = – 4) M A n Exp Calcd Cu Cl 2.00 ± 0.08 2.128 ± 0.030 Cu Br 2.24 ± 0.05 2.270 ± 0.032 Cu I 2.40 ± 0.02 2.434 ± 0.034 Cu N 1.96 ± 0.16 1.956 ± 0.027 Cu P 2.22 ± 0.04 2.091 ± 0.139 Ag Cl 2.39 ± 0.08 2.331 ± 0.004 Ag Br 2.45 ± 0.00 2.464 ± 0.003 Ag I 2.62 ± 0.00 2.655 ± 0.042 Ag N 2.24 ± 0.17 2.218 ± 0.034 Ag P 2.36 ± 0.05 2.440 ± 0.034 Au Cl 2.24 ± 0.15 2.312 ± 0.035 Au Br 2.38 ± 0.03 2.446 ± 0.035 Au I 2.50 ± 0.25 2.596 ± 0.036 Au N 1.98 ± 0.17 2.082 ± 0.064 Au P 2.25 ± 0.09 2.313 ± 0.045 Cu Cl 2.35 ± 0.27 2.275 ± 0.087 Cu Br 2.40 ± 0.19 2.448 ± 0.120 Cu I 2.43 ± 0.25 2.580 ± 0.088 Cu N 2.04 ± 0.17 2.164 ± 0.087 Cu P 2.27 ± 0.11 2.301 ± 0.059 Ag Cl 2.63 ± 0.18 2.531 ± 0.107 Ag Br 2.57 ± 0.08 2.606 ± 0.050 Ag I 2.77 ± 0.01 2.753 ± 0.053 Ag N 2.30 ± 0.20 2.466 ± 0.115 Ag P 2.44 ± 0.09 2.560 ± 0.020 Au Cl 2.70 ± 0.26 2.504 ± 0.098 Au Br 2.65 ± 0.03 2.626 ± 0.099 Au I 3.04 ± 0.29 2.746 ± 0.117 Au N Au P 2.70 ± 0.08 2.540 ± 0.092 Cu Cl 2.58 ± 0.32 2.371 ± 0.087 Cu Br 2.48 ± 0.17 2.525 ± 0.092 Cu I 2.69 ± 0.08 2.702 ± 0.091 Cu N 2.04 ± 0.12 2.173 ± 0.096 Cu P 2.36 ± 0.12 2.302 ± 0.066 Ag Cl 2.62 ± 0.14 2.610 ± 0.223 2.418 ± 0.120 S18 Ag Br 2.78 ± 0.11 2.774 ± 0.038 Ag I 2.82 ± 0.12 2.909 ± 0.123 Ag N 2.36 ± 0.13 2.498 ± 0.047 Ag P 2.52 ± 0.16 2.610 ± 0.045 Au Cl 2.77 ± 0.26 2.587 ± 0.123 Au Br Au I Au N Au P 2.657 ± 0.194 2.91 ± 0.01 2.864 ± 0.138 2.556 ± 0.130 2.46 ± 0.16 2.418 ± 0.088 S19 Figure S1 Distribution of L-Ag-L bond angles in AgI complexes described in the CSD as dicoordinate Figure S2 (a) Experimental Cu-X distances in [CuX(PR3)2] complexes (X = Br, empty squares and I, empty triangles) as a function of the P-Cu-P bond angle, and (b) Au-X distances in [AuX(PR3)2] complexes (X = Cl, empty circles; Br, empty squares, and I, empty triangles) The corresponding calculated distances (Table 4) are shown as closed symbols S20