1. Trang chủ
  2. » Tất cả

Skkn định hướng cho học sinh lớp 12 thpt giải một số bài toán về tính đơn điệu của hàm số dựa vào hai hay nhiều đồ thị cho trước ở mức độ vận dụng

23 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 0,99 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT HẬU LỘC SÁNG KIẾN KINH NGHIỆM ĐỊNH HƯỚNG CHO HỌC SINH LỚP 12 THPT GIẢI MỘT SỐ BÀI TOÁN VỀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ DỰA VÀO HAI HAY NHIỀU ĐỒ THỊ CHO TRƯỚC Ở MỨC ĐỘ VẬN DỤNG Người thực hiện: Phạm Văn Quí Chức vụ: Tổ trưởng chun mơn SKKN thuộc lĩnh vực (mơn): Tốn THANH HOÁ, NĂM 2022 skkn MỤC LỤC 1.Mở đầu 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.2.1 Đối với giáo viên 2.2.2 Đối với học sinh 2.3 Các giải pháp sử dụng để giải vấn đề 2.3.1 Phương pháp giải nhanh tốn khơng có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng 2.3.2 Phương pháp giải nhanh tốn có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Kết luận, kiến nghị 3.1 Kết luận 3.2 Kiến nghị Tài liệu tham khảo Danh mục: Các đề tài sáng kiến kinh nghiệm hội đồng đánh giá xếp loại cấp phòng GD & ĐT, cấp Sở GD & ĐT cấp cao xếp loại từ C trở lên Trang 2 2 3 4 5 10 15 18 18 18 19 20 skkn MỞ ĐẦU 1.1 Lí chọn đề tài Bài tốn tính đơn điệu hàm số dựa vào đồ thị toán thường xuất kỳ thi, đặc biệt kỳ thi THPT Quốc gia (từ năm 2019 trở trước) kỳ thi tốt nghiệp THPT, ln quan tâm đặc biệt học sinh giáo viên Hơn từ năm học 2016 – 2017 Bộ giáo dục chuyển mơn tốn sang hình thức thi trắc nghiệm khách quan nên tốn tính đơn điệu hàm số dựa vào đồ thị trở nên đa dạng phong phú, đồng thời kiến thức trải rộng có tính phân hóa cao Mặt khác hình thức thi trắc nghiệm khách quan nên phần lớn tốn tính đơn điệu hàm số dựa vào đồ thị cần phải suy luận logic sử dụng máy tính cầm tay, đặc biệt năm gần tốn tính đơn điệu hàm số dựa vào đồ thị mức độ vận dụng thường có xu hướng gắn với đồ thị hàm số cho trước làm cho giáo viên học sinh gặp khó khăn việc tìm tịi lời giải, để giải tốn loại u cầu địi hỏi phải có kiến thức tổng hợp hàm số đồ thị, kỹ đọc đồ thị tương giao đồ thị, đồng thời phải linh hoạt việc vận dụng kiến thức đơn điệu hàm số vào toán cụ thể Ngoài ra, tài liệu tham khảo năm gần tổng hợp phân loại dạng tốn tính đơn điệu hàm số mức độ nhận biết, thơng hiểu, cịn mức độ vận dụng dừng lại dạng tốn tính đơn điệu hàm số biết đồ thị hàm số mà học sinh quen gọi toán đơn điệu “hàm ẩn” Tuy nhiên gặp tốn tính đơn điệu hàm số liên quan đến hai hay nhiều đồ thị trở học sinh thường lúng túng, khơng biết định hướng tìm lời giải, dạng tốn chưa có xuất rời rạc toán đơn lẻ đề thi thử Do việc tổng hợp đưa phương skkn pháp giải nhanh dạng toán cần thiết cho học sinh trình ôn thi tốt nghiệp THPT Xuất phát từ thực tế trên, với số kinh nghiệm trình giảng dạy tham khảo số tài liệu, mạnh dạn chọn đề tài “Định hướng cho học sinh lớp 12 THPT giải số tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng” nhằm giúp em hiểu có kỹ giải tốt tập để đạt kết tốt kì thi 1.2 Mục đích nghiên cứu Thơng qua việc nghiên cứu toán giúp học sinh hiểu, định hướng cách làm tập, biết vận dụng lý thuyết để giải số số toán tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng cách xác nhanh chóng Từ kích thích khả tư duy, phát triển tư hàm học sinh ham hiểu biết u thích mơn học học sinh 1.3 Đối tượng nghiên cứu - Kiến thức hàm số, đồ thị hàm số chương trình tốn THPT - Hệ thống hướng dẫn phương pháp giải nhanh tốn khơng có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng - Hệ thống hướng dẫn phương pháp giải nhanh toán có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng 1.4 Phương pháp nghiên cứu - Phương pháp nghiên cứu lí thuyết - Phương pháp nghiên cứu tài liệu sản phẩm hoạt động sư phạm - Phương pháp tổng hợp - Phương pháp thống kê, so sánh NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Những kiến thức hàm số, đồ thị hàm số 2.1.1 Tính đơn điệu hàm số Kí hiệu khoảng đoạn nửa khoảng Giả sử hàm số xác định Hàm số mà Ta nói: đồng biến (giảm) nhỏ lớn với cặp thuộc , tức là: Hàm số thuộc mà nghịch biến (tăng) nhỏ nhỏ với cặp , tức là: ; skkn Hàm số đồng biến nghịch biến gọi chung hàm số đơn điệu 2.1.2 Tính đơn điệu dấu đạo hàm * Định lí Cho hàm số có đạo hàm a) Nếu với thuộc hàm số đồng biến b) Nếu với thuộc hàm số nghịch biến * Chú ý Ta có định lí mở rộng sau có đạo hàm Giả sử hàm số Nếu số hữu hạn điểm hàm số đồng biến (nghịch biến) 2.1.3 Ý nghĩa hình học đạo hàm Cho hàm số xác định khoảng có đạo hàm Gọi (C) đồ thị hàm số * Định lí Đạo hàm hàm số điểm hệ số góc tiếp tuyến (C) điểm * Định lí Phương trình tiếp tuyến đồ thị (C) hàm số là: , điểm [2] 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.2.1 Đối với giáo viên - Trước tốn tính đơn điệu hàm số dựa vào đồ thị cho trước chương trình thi quốc gia (từ năm 2009 – 2016) áp dụng trực tiếp đồ thị khảo sát câu trước mức độ nhận thức khơng địi hỏi q cao - Hiện với hình thức thi trắc nghiệm đặc biệt đề thi THPT Quốc gia năm gần kỳ thi Tốt nghiệp THPT năm 2020, 2021 đề tham khảo Bộ Giáo Dục Đào Tạo, đề thi thử trường THPT, câu hỏi tính đơn điệu hàm số dựa vào đồ thị cho trước xuất nhiều hơn, rộng Đặc biệt thường xuyên xuất câu hỏi tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng Tuy nhiên lại chưa có nhiều tài liệu nghiên cứu vấn đề nguồn tham khảo giáo viên học sinh hạn chế hạn chế skkn - Các giáo viên chưa có nhiều tài liệu thời gian nghiên cứu dạng tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước, chưa có nhiều kinh nghiệm giảng dạy định hướng cho học sinh giải tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng 2.2.2 Đối với học sinh - Trường THPT Hậu Lộc đóng địa bàn có nhiều xã khó khăn kinh tế, khó khăn việc học tập kiến thức sở mơn tốn em hầu hết tập trung mức độ trung bình - Với lớp toán vận dụng, em thường thụ động việc tiếp cận phụ thuộc nhiều vào kiến thức giáo viên cung cấp chưa có ý thức tìm tịi, sáng tạo tìm niềm vui, hưng phấn giải toán - Số lượng tài liệu tham khảo cho em cịn - Việc thi trắc nghiệm địi hỏi học sinh khơng hiểu chất tốn mà cịn phải tìm cách giải nhanh để đạt kết tối đa - Học sinh lúng túng nhiều dạng tốn tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước em chưa tiếp xúc nhiều, đặc biệt toán mức độ vận dụng Bên cạnh em cịn chưa định hướng phương pháp đắn tiếp xúc với tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng nên chưa có nhiều kĩ giải loại tập Trước tình hình muốn đưa ý tưởng giải tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng cách “ định hướng” cho học sinh cách giải số tập dạng cách “chính xác” “nhanh chóng”, giúp em phát triển tư kích thích ham học tập em 2.3 Các giải pháp sử dụng để giải vấn đề 2.3.1 Phương pháp giải nhanh tốn khơng có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng Bài 1: Cho hàm số liên tục có đồ thị đạo hàm , (đồ thị đường đậm hơn) hình vẽ Hàm số nghịch biến khoảng đây? skkn A * Phân tích: B C D Với tốn ta định hướng tìm lời giải cách tìm đạo hàm sau cho * Giải: , tìm khoảng giá trị Ta có: Khi đó: nghịch biến Chọn D * Nhậ n xét: Đây tốn quen thuộc nên việc tìm lời giải tốn khơng phải vấn đề, cần lưu ý đọc đồ thị hai hàm Bài 2: (Mã đề 101 – Kỳ thi THPT Quốc gia năm 2018) Cho hai hàm số , Hai hàm số có đồ thị hình vẽ bên, đường cong đậm đồ thị hàm số Hàm số đồng biến khoảng đây? A B C D * Phân tích: Với tốn đơn điệu hàm số học sinh quen với tốn “hàm ẩn” cho đồ thị hàm số điệu hàm hàm yêu cầu tím khoảng đơn mà sau đạo hàm lên thấy hàm skkn Tuy nhiên với toán đề cho hai đồ thị hàm số và yêu cầu tìm khoảng đồng biến hàm Thực mà nói theo lối mòn cũ “hàm ẩn” ta khó định hướng, với điểm cụ thể hình vẽ ta sử dụng nào? Vì để định hướng giải toán ta phải đánh giá khoảng giá trị , từ dựa vào giá trị cụ thể hai đồ thị cho ta đánh giá dấu hàm số * Giải: theo đáp án đề Ta có Dựa vào đồ thị, Vì khoảng , ta có , hàm số đồng biến (đồ thi đường lên) (*) Mặt khác: Vì , khoảng hàm số đồng biến nên (**) Từ (*) (**) suy Do hàm số đồng biến Chọn B skkn * Nhận xét: Đây tốn khó học sinh chưa tiếp cận, giải tốn học sinh thường tính đạo hàm đánh giá dựa vào đáp án Bài tốn địi hỏi tư hàm học sinh mức cao, biết đánh giá giá trị hàm số vận dụng tính đơn điệu đồ thị hàm số cách trục quan từ hình vẽ Bài 3: Cho hai hàm số có đồ thị đạo hàm hình vẽ Hỏi đồ thị hàm số khoảng đây? đồng biến A B C D * Phân tích: Đây tốn hồn tồn tương tự toán nên ta định hướng cho học sinh tính cho * Giải: đánh giá Ta có dựa vào đồ thị theo đáp án đề Với Dựa vào đồ thị ta thấy hàm biến nên: Mặt khác: nghịch (*) Dựa vào đồ thị hàm đồng biến ta thấy hàm số (**) Từ (*) (**) suy ra: biến Chọn C Hàm số đồng skkn * Nhận xét: So với đánh giá “dễ” hơn, kiện toán cho trùng khớp với cách đánh giá, làm dạng tốn học sinh dễ dàng tìm lời giải Bài 4: Cho ba hàm số , , Đồ thị ba hàm số cho hình vẽ Hàm số đây? đồng biến khoảng A B C D * Phân tích: Khi tiếp cận ta thấy toán rắc rối, đặc biệt sau đạo hàm ta việc giải trở nên ko khả thi có tới ba đồ thị, ta đánh giá đạo hàm theo giá trị đáp án để từ tìm lời đáp án tốn * Giải: Ta có: Khi Do Hàm số đồng biến skkn Chọn C * Nhận xét: Như tốn dạng địi hỏi học sinh phải có kỹ đọc đồ thị thật thành thạo đồng thời biết vận dụng linh hoạt việc đánh giá giá trị hàm số để tìm khoảng đơn điệu hàm số thông qua đáp án cho trước Bài 5: Cho hàm số y  f ( x) , y  f '( x) có đồ thị hình vẽ Trên khoảng  4;3 , hàm số y  e x 10 f ( x) có khoảng nghịch biến? C D * Phân tích: Bài tốn cho đồ thị hàm số y  f ( x) , y  f '( x) lại hỏi A B  x 10 y  e f ( x ) nên để sử dụng giả thiết từ việc khoảng nghịch biến hàm số đọc đồ thị ta phải làm xuất tương giao đồ thị hàm số y  f ( x) y  f '( x) Từ định hướng ta đạo hàm hàm số y  e x 10 f ( x) làm xuất phương trình: , từ dựa vào đồ thị cho ta tìm số nghiệm phương trình tìm số khoảng nghịch biến Giải: y '  e  x 10 f ( x)  f '( x).e  x 10  e  x 10   f ( x )  f '( x)  Ta có: Dựa vào đồ thị, ta có: Bảng biến thiên: x y'  x  a , 4  a    y '   f '( x)  f ( x)   x  b,   b    x  c,  c   a -4 + 3 -3 - - - c b + + - y 10 skkn  x 10 f ( x) có hai khoảng nghịch Dựa vào bảng biến thiên suy hàm số y  e biến (a, b);(c;3) Chọn B * Nhận xét: Nhìn chung tốn dạng khơng có phương pháp cụ thể tối ưu để giải tất toán, toán ta phải biết tư duy, tống hợp xâu chuỗi kiến thức học để vận dụng linh hoạt vào toán cụ thể Tuy nhiên đề cho hai hay nhiều đồ thị ta phải để ý đến tương giao phải độc đồ thị cách xác, từ vận dụng triệt để giả thiết tốn cho để tìm hướng giải toán 2.3.2 Phương pháp giải nhanh tốn có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng Bài 1: Cho hàm số hàm số và Gọi hai hàm số liên tục có đồ thị hình vẽ Gọi ba giao điểm A, B, C hình vẽ có hồnh độ , khẳng định sau đúng? A Hàm số đồng biến khoảng B Hàm số đồng biến khoảng C Hàm số đồng biến khoảng D Hàm số nghịch biến khoảng * Phân tích: Đây toán chứa tham số mức độ vừa phải, cần kỹ đọc đồ thị mức mà cụ thể tương giao hai đồ thị ta xét dấu hàm số cần lập bảng biến thiên hàm số giải Giải: Hơn ta tốn Ta có: 11 skkn Trên miền đồ thị nằm phía đồ thị hàm số đồ thị nằm phía đồ thị hàm số nên Trên miền nên Ta có bảng biến thiên đồ thị hàm số khoảng Từ bảng biến thiên ta có hàm số đồng biến khoảng Chọn C * Nhận xét: Bài toán giải theo quy trình “cơ bản” việc xét tính đơn điệu hàm số là: Tính đạo hàm; Xét dấu đạo hàm(dựa vào tương giao hai đồ thị); lập bảng biến thiên kết luận khoảng đơn điệu Điều quen thuộc với học sinh nên việc định hướng cho học sinh thuận lợi Bài 2: Cho hai hàm số hai hàm số giá trị biểu thức A có đồ thị hình vẽ Biết bằng: B có khoảng nghịch biến Khi C D * Phân tích: Ở kiện toán cho đồ thị hai hàm số hai hàm số có khoảng nghịch biến ta khai thác tính đơn điệu hàm số tham số) từ ta cho hai hàm số và (khơng có có 12 skkn khoảng nghịch biến thơng qua khoảng nghịch biến hàm số tìm Giải: Từ đồ thị hàm số ta có: , từ nghịch biến nghịch biến hàm số nghịch biến khoảng Từ đồ thị hàm số Xét hàm số * Nếu ta có: nghịch biến ta có: ta có: hàm số nghịch biến nghịch biến khoảng Vì hai hàm số trường hợp khơng thỏa mãn * Nếu ta có: Vậy để hai hàm số có khoảng nghịch biến nên nghịch biến có khoảng nghịch biến : Chọn C * Nhận xét: Bài toán cho đồ thị hàm số phải thành thạo việc đọc đồ thị để từ đồ thị rút khoảng đơn điệu, học sinh phải lưu ý tính đạo hàm hàm số hợp việc giải tìm khoảng nghịch biến hàm số phải biết xét trường hợp tham số để tránh sai sót Về mức độ tư tốn khơng địi hỏi cao nên việc định hướng cho học sinh vấn đề 13 skkn Bài 3: Cho hai hàm số và có phần đồ thị biểu diễn đạo hàm hình vẽ Biết hàm số đồng biến A * Phân tích: khăn ln tồn khoảng Số giá trị nguyên dương B thỏa mãn C D Đây toán chứa tham số nên việc định hướng lời giải khó hơn, nhiên đạo hàm hàm số ta Từ đồ thị ta thấy được: khoảng đồng biến Tuy nhiên thực tế tốn lại có , ta nghĩ đến việc tịnh tiến đồ thị đồ thị cho tồn khoảng tiến cho phần đồ thị hướng giải toán * Giải: Hàm số Đó đồng biến Đồ thị hàm số đơn vị đồ thị hàm số Hàm số , suy ra: Chọn C tịnh tiến lên phía ln tồn khoảng đồng biến khi: Mà trên, tức tịnh “nằm dưới” đồ thị Ta có: để làm xuất 14 skkn Để giải toán ta phải liên hệ phép tịnh tiến đồ thị * Nhận xét: với đọc đồ thị cách xác tương giao hai đồ thị Bài 4: Cho hai hàm số với có đồ thị hình vẽ Đồ thị hàm số tọa độ cắt đồ thị hàm số qua gốc bốn điểm có hồnh độ Tiếp tuyến đồ thị hàm số có hệ số góc khoảng sau đây? điểm có hồnh độ Khi hàm số đồng biến A B C D * Phân tích: Mới nhìn vào đề ta thấy nhiệm vụ tốn khó khăn phải tìm mà lượng tham số lại nhiều Chính tham số q nhiều nên ta khơng thể tìm cụ thể hàm số Tuy nhiên tốn lại cho rõ ràng hồnh độ giao điểm hai hàm số ta hướng cho học sinh tìm phương trình hồnh độ giao điểm dựa vào nghiệm tìm Tuy nhiên phải lưu ý cho học sinh giả thiết tiếp tuyến đồ thị hàm số điểm có hồnh độ có kiện Giải: có hệ số góc để từ ta Đến coi toán giải 15 skkn + Đồ thị hàm số qua gốc tọa độ nên + Xét hàm số: Đồng hệ số đa thức ta + Theo bài, tiếp tuyến đồ thị hàm số có hệ số góc nên Mà: Từ điểm có hồnh độ Nên: suy Vậy Hàm số đồng biến Chọn D Để giải tốn địi hỏi mức độ tư tổng hợp, vận * Nhận xét: dụng kiến thức đồ thị, tương giao hai đồ thị kiến thức tiếp tuyến hàm số phải tốt Học sinh phải biết chuyển từ đồ thị sang phương trình hồnh độ giao điểm phương pháp “đồng hệ số” để tìm hàm số Khi tìm hàm số tốn giải 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Sáng kiến kinh nghiệm áp dụng thành công lớp 12 trường THPT Hậu Lộc mang lại kết tích cực học sinh đồng nghiệp giáo viên - Đối với thân sau nghiên cứu kĩ kiến thức liên quan phần đồ thị hàm số, đặc biệt toán số nghiệm phương trình thơng qua 16 skkn đồ thị cho trước mức độ vận dụng giúp có kiến thức kinh nghiệm việc giảng dạy cho em Từ định hướng cho em cách phát tư việc giải toán mức độ vận dụng - Với đồng nghiệp, việc sử dụng tài liệu nhỏ tài liệu để tham khảo hướng dẫn cho học sinh giải toán số nghiệm phương trình thơng qua đồ thị cho trước mức độ vận dụng - Đối với học sinh sau áp dụng cách tiếp cận việc giải toán giúp học sinh phát triển tư Học sinh có khả định hướng cách làm với dạng tập khó khác Học sinh tự tin trình làm bài, tạo hứng thú cho em trình học tập Việc làm tập đồ thị hàm số nói chung tập số nghiệm phương trình thơng qua đồ thị cho trước em trở nên nhanh chóng xác Cụ thể, tơi cho em số kiểm tra phần số nghiệm phương trình thơng qua đồ thị cho trước trình trước sau áp dụng phương pháp giải tập số nghiệm phương trình thơng qua đồ thị cho trước mức độ vận dụng, kết sau: Bài kiểm tra số 1: ( Trước áp dụng sáng kiến) Đề bài: Bài 1: (Mã đề 102 – Kỳ thi THPT Quốc gia năm 2018) Cho hai hàm số , Hai hàm số có đồ thị hình vẽ bên, đường cong đậm đồ thị hàm số Hàm số đồng biến khoảng đây? A B Bài 2: Cho hai hàm số C D có phần đồ thị biểu diễn đạo hàm hình vẽ Có giá trị nguyên dương tham số 17 skkn để hàm số tồn khoảng đồng biến ? A Kết quả: Lớp Sĩ số 12A1 12A2 44 41 B Đúng câu SL Tỉ lệ 29 66.0% 32 78.0% C Đúng câu SL Tỉ lệ 14 32.0 % 22.0 % D Đúng câu SL Tỉ lệ 2.0 % 0% Bài kiểm tra số 2: ( Sau áp dụng sáng kiến kinh nghiệm) Câu 1: Cho hàm số hàm số y  e x f  x  y  f  x , y  f ' x 0; có đồ thị hình vẽ Trên khoảng   , có khoảng đồng biến? B A Câu 2: Cho hai hàm số C D có đồ thị biểu diễn đạo hàm hình vẽ Biết hàm số thỏa giá trị lớn thị điểm điểm , phương trình tiếp tuyến với đồ là đồng biến phương trình tiếp tuyến với đồ thị Giá trị bằng: 18 skkn A Kết quả: B C D Đúng câu Đúng câu Đúng câu SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ 12A1 44 0% 15 34 % 29 66 % 12A2 41 4.9% 19 46.3 % 20 48.8% * So sánh kết thu từ hai bảng ta thấy sau áp dụng phương pháp giải số tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước học sinh làm tốt khả tư phát triển Điển hình có câu khó dạng gặp em làm tốt Lớp Sĩ số KẾT LUẬN, KIẾN NGHỊ 3.1 Kết luận Qua việc vận dụng đề tài nghiên cứu vào trình giảng dạy học tập học sinh thu đươc kết tích cực bảng số liệu phân tích Đề tài giúp cho giáo viên nhiều việc truyền đạt tư tưởng, phương pháp kiến thức cho học sinh Bản thân học sinh giảng dạy thông qua đề tài giúp em phát triển tư duy, biết định hướng để giải toán Khơi dậy em niềm thích thú, ham học hỏi đặc biệt giúp em đạt hiệu cao làm tập thi Tốt nghiệp THPT tới Việc áp dụng đề tài không dừng lại số tốn tính đơn điệu hàm số thông qua hai hay nhiều đồ thị cho trước mức độ vận dụng mà cịn mở rộng nhiều dạng toán khác Bản thân đề tài động lực cho giáo viên học sinh tìm tịi phát triển để có phương pháp, cách truyền thụ kiến thức cảm hứng cho học sinh tốt 3.2 Kiến nghị Đối với Sở giáo dục đào tạo Thanh Hóa: Thơng qua việc chấm sáng kiến kinh nghiệm hàng năm, lựa chọn đề tài có chất lượng cần phổ biến rộng rãi cho trường tỉnh để trường có điều kiện tương đồng triển khai áp dụng hiệu Nên đưa SKKN có chất lượng vào mục “tài nguyên” Sở triển khai kho “tài ngun” đến tồn trường THPT toàn Tỉnh để giáo viên tồn Tỉnh tham khảo cách rộng rãi 19 skkn Đối với trường THPT Hậu lộc 3: Mỗi sáng kiến kinh nghiệm lựa chọn cần phổ biến rộng rãi phạm vi tổ, nhóm Cần có lưu thư viện để giáo viên học sinh tham khảo Đối với tổ chuyên môn: Cần đánh giá chi tiết mặt đạt được, hạn chế hướng phát triển đề tài cách chi tiết cụ thể để hoàn thiện sáng kiến Đối với đồng nghiệp: Trao đổi ý tưởng, kinh nghiệm hỗ trợ việc áp dụng rộng rãi sáng kiến lớp học Phản hồi mặt tích cực mặt hạn chế sáng kiến Đề tài nghiên cứu thời gian hạn chế, mong Hội đồng khoa học Sở giáo dục đào tạo Thanh Hóa nghiên cứu, góp ý bổ sung để sáng kiến hồn thiện Thanh Hóa, ngày 16 tháng năm 2022 XÁC NHẬN CỦA THỦ TRƯỞNG Tôi xin cam đoan sáng kiến kinh ĐƠN VỊ nghiệm tôi, không chép nội dung người khác Người viết sáng kiến Phạm Văn Quí TÀI LIỆU THAM KHẢO SGK giải tích 12 – Nhà xuất giáo dục 2008 SGK Đại số Giải tích 11 – Nhà xuất giáo dục 2008 Đề thi THPT Quốc gia năm 2017, 2018, 2019, Đề tốt nghiệp THPT năm 2020, 2021 Bộ giáo dục đào tạo Website: http://www.dethithu.net Website: http://www.luyenthithukhoa.vn 20 skkn DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Phạm Văn Q Chức vụ đơn vị cơng tác: Tổ trưởng chuyên môn, Trường THPT Hậu Lộc Kết Cấp đánh đánh giá Năm học giá xếp loại TT Tên đề tài SKKN xếp loại đánh giá (Phòng, (A, B, xếp loại Sở, Tỉnh ) C) Một số phương pháp giải Cấp Sở C 2007-2008 phương trình khơng mẫu mực Một số cách giải tốn so sánh nghiệm phương trình Cấp Sở C 2013-2014 bậc hai với số Định hướng cho học sinh phát Cấp Sở B 2014-2015 giải vấn đề với toán tọa độ mặt phẳng từ tính chất 21 skkn đường tròn Định hướng cho học sinh lớp 12 THPT giải nhanh số dạng tập tích phân mức độ vận dụng Định hướng cho học sinh lớp 12 THPT giải nhanh số dạng tập trắc nghiệm môđun số phức mức độ vận dụng Định hướng cho học sinh lớp 12 THPT giải tốn tích phân thơng qua đồ thị cho trước mức độ vận dụng Định hướng cho học sinh lớp 12 THPT giải tốn tìm số nghiệm phương trình dựa vào đồ thị cho trước mức độ vận dụng Cấp Sở C 2017-2018 Cấp Sở C 2018-2019 Cấp Sở C 2019-2020 Cấp Sở C 2020-2021 22 skkn ... điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng 2.3.2 Phương pháp giải nhanh tốn có tham số tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng 2.4... điệu hàm số dựa vào hai hay nhiều đồ thị cho trước mức độ vận dụng nên chưa có nhiều kĩ giải loại tập Trước tình hình tơi muốn đưa ý tưởng giải tốn tính đơn điệu hàm số dựa vào hai hay nhiều đồ thị. .. nghiệm môđun số phức mức độ vận dụng Định hướng cho học sinh lớp 12 THPT giải tốn tích phân thơng qua đồ thị cho trước mức độ vận dụng Định hướng cho học sinh lớp 12 THPT giải tốn tìm số nghiệm

Ngày đăng: 02/02/2023, 08:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w