1. Trang chủ
  2. » Giáo Dục - Đào Tạo

CƠ HỌC LƯỢNG TỬ - BÀI 25 pot

22 224 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 770 KB

Nội dung

HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam CƠ HỌC LƯỢNG TỬ Nguyễn Văn Khiêm HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam Bài 25 PHƯƠNG TRÌNH DIRAC CHO HẠT TỰ DO HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam Trong bài này, ta tìm phương trình trạng thái ở dạng chỉ chứa các đạo hàm bậc nhất theo tọa độ không thời gian. Như đã nói ở bài trước, đây là một trong hai cách đói xứng hóa tương đối tính phương trình Schrödinger. HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam 1. 1. Phương trình Dirac Trở lại phương trình Schrödinger cho hạt tự do: (25.1) Để đối xứng hóa bậc nhất, ta phải thay biểu thức của toán tử này bằng biểu thức dạng: trong đó ψ ψ H t i ˆ = ∂ ∂          ∂ ∂ + ∂ ∂ + ∂ ∂ −= 2 2 2 2 2 22 2 ˆ zyxm H  4321 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ββββ +++= zyx pppH (25.2) trong đó 4321 ˆ , ˆ , ˆ , ˆ ββββ Là những toán tử chưa biết. Tuy nhiên, dể bảo đảm (25.2) chỉ chứa các đạo hàm bậc nhất theo các biến số không gian, ba toán tử 321 ˆ , ˆ , ˆ βββ không được phép chứa zyx ppp ˆ , ˆ , ˆ . HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam thỏa mãn hệ thức năng - xung lượng sau: (25.3) Bình phương hai vế đẳng thức (25.2) và so sánh kết quả với (25.3) ta được : Ta yêu cầu Đồng thời, để bảo đảm tính bất biến của H ˆ khi dịch chuyển hệ tọa độ và dịch mốc thời gian, còn phải thừa nhận rằng 4321 ˆ , ˆ , ˆ , ˆ ββββ không chứa chính các tọa độ x, y, z, t. H ˆ ( ) IcmpppcH zyx ˆ ˆˆˆ ˆ 4222222 +++= trong đó I ˆ là toán tử đồng nhất (hay toán tử đơn vị). I ˆ (25.4)        ≠=+ = === k)(i Icm Ic ikki 0 ˆ ˆ ˆ ˆˆˆ 422 4 22 3 2 2 2 1 ββββ β βββ HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam Bây giờ nếu đặt ii c αβ ˆ ˆ = với i = 1, 2, 3 và 4 2 4 ˆ ˆ αβ mc= thì: ( ) (25.5) 4 42 321 ˆ ˆˆˆ ˆ αααα cmpppcH zyx +++= đồng thời: (25.6) )(      ≠=+ = ki I ikki i 0 ˆˆˆˆ ˆ ˆ 2 αααα α Như vậy, (25.1) được thay thế bởi phương trình: ( ) [ ] (25.7) ψαααα ψ 4 2 321 ˆ ˆ ˆ ˆ ˆ ˆ ˆ mcpppc t i zyx +++= ∂ ∂  Phương trình (25.7) chính là phương trình Dirac. HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam Chú ý: muốn cho phương trình Dirac vẻ ngoài hoàn toàn đối xứng với x, y, z và τ=ct, ta thay x ip x ∂ ∂ −=  ˆ y ip y ∂ ∂ −=  ˆ z ip z ∂ ∂ −=  ˆ sau đó nhân hai vế với α 4 (từ phía trái) và chú ý rằng I= 2 4 α , chuyển vế và chia hai vế cho ci , ta được: ψψαααααα τ α  imc zyx − =       ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ 3424144 ˆˆˆˆˆˆˆ hay )(25.7' ψ ψ γ  imc x k k k − = ∂ ∂ ∑ = 3 0 ˆ với zxyxxxctx ===== 3210 ,,, τ , )( 321 ˆ , ˆ 440 ,,i ii === ααγαγ ( ) [ ] (25.7) ψαααα ψ 4 2 321 ˆ ˆ ˆ ˆ ˆ ˆ ˆ mcpppc t i zyx +++= ∂ ∂  Phương trình Dirac. HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam 2. Dạng ma trận của phương trinhg Dirac Phương trình (25.7) vẫn còn mang tính hình thức. Ta vẫn chưa biết được các toán tử k α ˆ tác dụng ra sao lên hàm trạng thái. ( ) [ ] (25.7) ψαααα ψ 4 2 321 ˆ ˆ ˆ ˆ ˆ ˆ ˆ mcpppc t i zyx +++= ∂ ∂  Để cụ thể hóa thêm, ta hãy chú ý rằng ngoài các hệ thức (25.6) ra, các toán tử này không còn phải tuân theo bất kỳ điều kiện nào khác, đồng thời (25.6) gợi ra tính chất của các ma trận (25.6) )(      ≠=+ = ki I ikki i 0 ˆˆˆˆ ˆ ˆ 2 αααα α Vì vậy, thể coi các toán tử i α ˆ là các ma trận sau (và từ đây chú ý rằng thay cho i α ˆ ta sẽ viết đon giản là i α i α HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam Còn những phương án khác, nhưng về mặt vật lý, chúng dẫn đễn những kết quả như nhau. Bây giờ ta sẽ thấy nên thể hiện tác dụng của các toán tử αi lên hàm sóng ra sao Phương án chọn này do V. Fock đề xuất Bạn đọc hãy tự kiểm tra để thấy rằng các ma trận này thảo mãn hệ thức (25.6). Vì toán tử là ma trậm vuông cấp 4, một cách tự nhiên ta sẽ phải coi rằng hàm ψ là một cột gồm bốn hàm thành phần, mỗi hàm đều phụ thuộc x, y, z, t và đều nhận giá trị là các số phức: (25.8)                          − − =             − =             − − =             = ; 0001 0010 0100 1000 ; 1000 0100 0010 0001 000 000 000 000 ; 0100 1000 0001 0010 43 21 αα αα i i i i HONG DUC UNIVERSITY 307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam Do đó, ta có: Như vậy, phương trình (25.7) trở thành một hệ phương trình như sau: và:             = 4 3 2 1 ψ ψ ψ ψ ψ                   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ x x x x x 4 3 2 1 ψ ψ ψ ψ ψ , 0100 1000 0001 0010 ˆ 3 4 1 2 4 3 2 1 11                   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ −=                   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂             −= ∂ ∂ −= x x x x i x x x x i x ip x ψ ψ ψ ψ ψ ψ ψ ψ ψ αψα  (25.9)              −         ∂ ∂ + ∂ ∂ − ∂ ∂ −= ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ −= ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ −= ∂ ∂ −         ∂ ∂ + ∂ ∂ − ∂ ∂ −= ∂ ∂ 4 2 44 3 4 2 2 3443 3 2 2112 4 2 1221 ψ ψψψψ ψ ψ ψψ ψ ψ ψψψψ ψ ψψψψ mc zy i x ci t i mc zy i x ci t i mc zy i x ci t i mc zy i x ci t i     [...]... nhau: và Theo chế phi lượng tử, năng lượng của hạt thay đổi liên tục nên hạt đang năng lượng E > m không thể nào mất năng lượng để đạt tới giá trị âm Tuy nhiên, như ta đã biết, trong chế lượng tử thì hạt mất năng lượng một cách gián đoạn, do đó nếu electron đang năng lượng E > m, nó thể mất đi một lượng tử năng lượng sao cho giá trị mới của năng lượng trở thành E’< -m Nhưng điều này lại... Từ (25. 25) ta i còn từ (25. 14) lại ∂t − (25. 13) (25. 14) = Eψ k i ∂ψ k = − Eψ k ∂t Như vậy, bất kể E lấy dấu như thế nào, luôn cùng lúc hai trạng thái, một với năng lượng dương và một với năng lương âm Dirac cho rằng, nghiệm với năng lượng âm cũng phải một ý nghĩa vật lý nào đó Do hệ thức E 2 = p 2 + m 2 , ( = c = 1), nên E ≥ m Vì vậy phổ năng lượng gồm hai khoảng rời nhau: và Theo chế... = −iCk E.e ∂t Thế các biểu thức này vào (25. 17), (25. 18), (25. 19), (25. 20) rồi rút gọn cho − C2 px + iC2 p y + mC4 = 0  C2 E = −C2 pz + mC3 = 0  C3 E = C4 px + iC4 p y + C3 pz + mC2 = 0 C E = C p − iC p − C p = 0 3 x 3 y 4 z  4 (25. 21) (25. 22) (25. 23) (25. 24) e  − iEt + ipr HONG DUC UNIVERSITY 307 Le Lai Str Thanh Hoa City, Thanh hoa, Viet nam Từ (25. 21) suy ra C4 = α ( px − ip y ) C2 = mα... Thanh hoa, Viet nam Khi đã xuất hiện lỗ trống thì sẽ hội để một electron với năng lượng dương “nhảy vào” và lấp đầy lỗ trống đó, sau khi mất một lượng tử năng lượng thích hợp Hiện tượng lỗ trống xuất hiện cùng với việc electron cũng “từ chân không thoát ra” ngày nay được gọi là sự sinh cặp Quá trình này đòi hỏi phải một lượng tử năng lượng đủ lớn để đưa chân không vào trạng thái kích thích... = α ( px − ip y ) C2 = mα (α là số phức tùy ý) Ta sẽ chọn α thực và dương Thế C2 vào (25. 10), ta được: mα ( E + pz ) = mC3 C3 = α ( E + pz ) 6 Trạng thái với năng lượng âm , Dễ chứng tỏ rằng, cùng với nghiệm dạng: ψ k = Ck e  − iEt + ipr (25. 25) phương trình Dirac cũng nghiệm: ψ 'k = C 'k e  iEt + ipr (25. 26)  ∂ψ 1 HONG DUC UNIVERSITY∂ψ 2 i = −i ∂ψ 2 ∂ψ 1 −i − mψ 4  ∂t ∂x ∂y ∂z  Thanh... mà trong đó mọi trạng thái với năng lượng âm đã được chiếm giữ, và do đó, theo nguyên lý Pauli, electron không thể “chui” vào vùng năng lượng âm được Tuy nhiên, electron ở vùng năng lượng âm lại thể nhận một lượng tử năng lượng đủ lớn để trở thành electron với năng lượng dương Khi đó, chân không sẽ bị “khuyết”, và ở đó xuất hiện một “lỗ trống” Theo định luật bảo toàn điện tích, lỗ trống này điện... 4,trong đó: Ta tìm nghiệm dưới dạng ψ k = Ck e (25. 15) Tr  − iEt + ipr Trước hết, xét trường hợp C1 = 0 Khi đó  ∂ψ 2 i ∂t   ∂ψ 2 i ∂t   ∂ψ i 3  ∂t  ∂ψ 4 i  ∂t  (k = 1,2,3,4) và ψ1 = 0 ∂ψ 2 + mψ 4 = 0 ∂y ∂ψ 2 =i + mψ 3 ∂z ∂ψ 4 ∂ψ 4 ∂ψ = −i + − i 3 + mψ 2 ∂x ∂y ∂z ∂ψ ∂ψ 3 ∂ψ 4 = −i 3 − +i ∂x ∂y ∂z + ψ 2 ,ψ 3 ,ψ thỏa mãn hệ: 4 (25. 17) (25. 18) (25. 19) (25. 20)  ∂ψ k = iCk p y e −iEt + ipr ∂y HONG... 4 2 2 2 ∂ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ c(α 4α1 px + α 4α 2 p y + α 4α 3 pz ) − i α 4  − m c = - c p +  − m 2c 4  ∂t  ∂t 2  (25. 6) HONG DUC UNIVERSITY 307 Le Lai Str Thanh Hoa City, Thanh hoa, Viet nam Do đó, ta thu được phương trình: 2  2 2  2 ∂ ˆ c p + − m 2c 4 ψ = 0  ∂t 2   (25. 10) Đây chính là phương trình Klein-Gordon 4 Tính spinor của hàm trạng thái trong phương trình Dirac Xét phép quay hệ trục... electron nào năng lượng âm HONG DUC UNIVERSITY 307 Le Lai Str Thanh Hoa City, Thanh hoa, Viet nam P Dirac đã đề xuất một cách lý giải như sau Như ta biết, trong lý thuyết lượng tử thì chân không không phải là vùng không gian mà ở đó tuyệt đối không gì Trạng thái chân không vẫn một sự dự trữ năng lượng P Dirac cho rằng, đó là một “môi trường” mà trong đó mọi trạng thái với năng lượng âm đã được... hệ phương trình (25. 9) trong hệ đơn vị sao cho Khi đó, ta : ∂ψ 2 ∂ψ 2 ∂ψ 1  ∂ψ 1 i = −i − −i − mψ 4  ∂t ∂x ∂y ∂z   i ∂ψ 2 = −i ∂ψ 1 + ∂ψ 1 + i ∂ψ 2 + mψ 3  ∂t ∂x ∂y ∂z  (25. 13) (25. 14) HONG DUC UNIVERSITY 307 Le Lai Str Thanh Hoa City, Thanh hoa, Viet nam ∂ψ 3 ∂ψ 4 ∂ψ 4  ∂ψ 3 i = −i + −i + mψ 2  ∂t ∂x ∂y ∂z   i ∂ψ 4 = −i ∂ψ 3 − ∂ψ 3 + i ∂ψ 4 − mψ 1  ∂t ∂x ∂y ∂z  (25. 16) ) ψ = (ψ 1 . rpiiEt yk k epiC y  +− = ∂ ∂ . ψ rpiiEt yk k epiC y  +− = ∂ ∂ . ψ rpiiEt zk k epiC z  +− = ∂ ∂ . ψ rpiiEt k k eEiC t  +− −= ∂ ∂ . ψ Thế các biểu thức này vào (25. 17), (25. 18), (25. 19), (25. 20) rồi rút gọn cho rpiiEt e  +− (25. 24) 0 (25. 23) 0 (25. 22) 0 (25. 21) 0        =−−= =+++= =+−= =++− zyx zyx z yx pCpiCpCEC mCpCpiCpCEC mCpCEC mCpiCpC 4334 23443 322 422 . Theo cơ chế phi lượng tử, năng lượng của hạt thay đổi liên tục nên hạt đang có năng lượng E > m không thể nào mất năng lượng để đạt tới giá trị âm. Tuy nhiên, như ta đã biết, trong cơ chế lượng. hạt mất năng lượng một cách gián đoạn, do đó nếu electron đang có năng lượng E > m, nó có thể mất đi một lượng tử năng lượng sao cho giá trị mới của năng lượng trở thành E’< -m. Nhưng điều

Ngày đăng: 24/03/2014, 14:20

TỪ KHÓA LIÊN QUAN