GV Nguyễn Thị Kim Cương 2018 2019 GV Nguyễn Thị Kim Cương 2018 2019 BÀI TẬP TRẮC NGHIỆM CHƯƠNG III – HÌNH HỌC 10 DẠNG 1 PHƯƠNG TRÌNH ĐƯỜNG THẲNG Câu 1 Trong mặt phẳng tọa độ Oxy, cho đường thẳng ( )1[.]
GV Nguyễn Thị Kim Cương 2018- 2019 BÀI TẬP TRẮC NGHIỆM CHƯƠNG III – HÌNH HỌC 10 DẠNG 1: PHƯƠNG TRÌNH ĐƯỜNG THẲNG x = + 2t ( t ∈ R ) Tìm hệ số góc ∆ Câu 1: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ : y = + 4t A k = - B k = C k = D k = Câu 2: Viết phương trình đường thẳng trung trực đoạn thẳng AB , biết A ( 1; −2 ) , B ( −3; ) A x − y − = B x − y + = C x + y + = D x − y + = Câu 3: Cho hai đường thẳng ∆1 : −4 x + y + = ∆ : x − y + = Tính số đo góc ∆1 ∆ A ϕ ; 1700 B ϕ ; 100 C ϕ ; 110 D ϕ ; 630 Câu 4: Cho hai đường thẳng d1 : mx + y − = 0, d : x − y + = Tìm giá trị m để d1 hợp với d góc 45o A m = -1 B Khơng tìm giá trị m C m = D với m Câu 5: Tìm vec tơ phương đường thẳng d qua A(3; −1) B (2; 4) r r r r A u (−1;3) B u (−1;5) C u (5;1) D u (5;3) Câu 6: Cho đường thẳng ∆ : x − y + = Trong vectơ sau vectơ vectơ pháp tuyến ∆ ? r r r r A n = ( 1; −5 ) B n = ( 1;5 ) C n = ( −5;1) D n = ( 5;1) Câu 7: Tính khoảng cách từ M (4; −3) đến d: x − y − = 11 C D 5 Câu 8: Trong mặt phẳng Oxy cho đường thẳng ∆ có phương trình x − 10 y + = Tìm hệ số góc đường thẳng ∆ A B 5 A k = − B k = − C k = D k = 5 Câu 9: Tìm tọa độ điểm A giao điểm hai đường thẳng d1 : − y + x + = d : 3x − y = A A(−5; −15) B A(−1; −3) C A(1;3) D A(5;15) Câu 10: Cho đường thẳng d: x − y + = Điểm sau thuộc đường thẳng d? 1 A P 0; − ÷ B M (1; 2) C N (3; −2) D Q(2;3) 2 Câu 11: Trong mặt phẳng Oxy cho hai điểm A(1;3) B(-1;5) Viết phương trình đường trung trực ∆ đoạn thẳng AB A x − y + = B x − y + = C x + y − = D x − y + = A (1;1), B (0; − 1), C (4;1) Câu 12: Cho tam giác ABC với Viết phương trình tổng quát đường trung tuyến qua A tam giác ABC A x − y = B x + y + = C x + y − = D x − y − = Trang GV Nguyễn Thị Kim Cương 2018- 2019 Câu 13: Cho A ( 2; ) , B ( 5;1) C thuộc đường thẳng ∆ : x – y + = C có hồnh độ dương cho diện tích tam giác ABC 17 Tìm tọa độ C 76 18 26 33 84 62 A (12;10) B − ; − ÷ C ; ÷ D ; ÷ 5 5 5 r 2 1 Câu 14: Cho u = ; − ÷ vectơ phương đường thẳng Hỏi vectơ sau vectơ 3 2 phương d? r A v = ( 4; −3) r B v = ( −3; ) r C v = ( 0;0 ) r D v = ( 2; −1) r Câu 15: Tính hệ số góc đường thẳng d có vectơ phương u = ( −2;5 ) −5 −2 B k = C k = −10 D k = 2 Câu 16: Trong mặt phẳng Oxy cho đường thẳng a có phương trình x + y + = Tìm điểm A truc Ox A k = thỏa d ( A, a ) = 13 11 11 15 A A 0; ÷, A ( 0; −5 ) B A ;0 ÷, A − ;0 ÷ 3 2 13 − − 13 − 65 − − 65 − ;0 ÷ , A ;0 A ;0 ÷ ;0 ÷ C A D ÷ ÷ ÷ ÷, A ÷ 2 Câu 17: Cho hai đường thẳng d1 : x − y = d : x + y − = Tìm khẳng định 4 2 B d1 cắt d tại điểm M ; ÷ 3 3 −4 −2 C d1 song song d D d1 cắt d tại điểm M ; ÷ 3 Câu 18: Cho tam giác ABC có A ( 3; −1) , B ( −3; ) , C ( 1; −2 ) Tìm tọa độ chân đường cao xuất phát từ đỉnh A tam giác ABC A d1 trùng d 35 15 29 15 29 A ; ÷ B − ; ÷ C ( −1;1) D ; − ÷ 3 13 13 13 13 Câu 19: Cho đường thẳng d qua điểm K ( 0; −7 ) vng góc với đường thẳng ∆ : x − y + = Tìm phương trình tổng quát d? A x + y − = B x − y − 21 = C −3x + y + = D −3x + y + 22 = Câu 20: Trong mặt phẳng Oxy cho A ( 1;1) , B ( 2; ) , C ( 4;3) Tính diện tích tam giác AB 10 C S ∆ABC = D S ∆ABC = 2 Câu 21: Tính khoảng cách từ điểm A ( 3; ) đến đường thẳng ∆ : x − y − = A S ∆ABC = A 13 13 B S ∆ABC = B C 13 Trang GV Nguyễn Thị Kim Cương 2018- 2019 x = 1− t Câu 22: Cho đường thẳng d1 :2 x − my + = d : Tìm giá trị tham số m để đường thẳng d1 y = + 3t vng góc đường thẳng d 2 B m = C m = D m = −6 3 Câu 23: Trong mặt phẳng Oxy cho đường thẳng có phương trình x = Hệ số góc đường thẳng cho A m = − A k = B không tồn tại C k = D k = r Câu 24: Cho đường thẳng d qua điểm P ( 2;3) có vectơ pháp tuyến n = ( 4;1) Lập phương trình tổng quát A x + y − 11 = B x + y + 11 = C x + y − 11 = D x − y − = Câu 25: Cho hình bình hành ABCD biết A ( –2;1) phương trình đường thẳng CD là: x – y – = Viết phương trình tham số cạnh AB x = −2 − 4t x = −2 − 3t x = −2 − 3t x = −2 + 3t A B C D y = − 3t y = − 4t y = + 4t y = − 4t Câu 26: Trong mặt phẳng Oxy cho đường thẳng có phương trình x + y − = Tìm vectơ pháp tuyến đường thẳng r r r r A n = ( 3; ) B n = ( 3; −2 ) C n = ( 2;3) D n = ( 2;0 ) Câu 27: Cho đường thẳng ∆ qua hai điểm M ( −7; −3) , N ( 0; −4 ) Vectơ pháp tuyến ∆ r r r r A n = ( 7; −1) B n = ( 1;7 ) C n = ( 1; −7 ) D n = ( 7;7 ) Câu 28: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d cắt trục Ox tại A(3;0) , cắt trục Oy tại B (0; −5) Tìm phương trình đường thẳng d? x y x y x y x y + = + = =0 B C + D − = −5 3 −5 Câu 29: Cho đường thẳng d qua điểm M ( 0; ) vuông góc với đường thẳng ∆ : − x + y + = Viết A phương trình tham số x = t x = 3t x = − t x = −t A B C D y = + 3t y = 2+t y = 3t y = + 3t Câu 30: Cho hai đường thẳng d1 : mx + y + = d : x − y + m = ( m tham số) Tìm m để hai đường thẳng d1 d song song 1 A m = B m = C m = −2 D m = − 2 Câu 31: Cho đường thẳng d1 : x – y + = 0, d : x + y –1 = 0, d : x + y –1 = Viết phương trình đường thẳng d qua giao điểm d1 d 2, song song với d3 A x + y − = B x − y + = C − x + y − = D x + y + = Câu 32: Cho đường thẳng d qua điểm Q ( 5; −2 ) có hệ số góc k = Hỏi phương trình sau phương trình tổng quát d? A x − y − 17 = B x + y + = C x − y − 17 = D x − y − 13 = Trang GV Nguyễn Thị Kim Cương 2018- 2019 Câu 33: Trong mặt phẳng Oxy, cho hai điểm A(2; 2), B (3;0) Tìm phương trình đường thẳng ∆ qua A khoảng cách từ B đến ∆ lớn nhất A x − y − = B x + y − = C y − = D x − y + = Câu 34: Cho điểm A(1;2) , B(5;5) đường thẳng :x–y+1 = Tìm điểm M thuộc đường thẳng cho tam giác ABM có diện tích 10 A M(21;22), M(–19;-18) B Khơng tìm M 27 34 −13 −6 ; ÷ C M(21;22) D M ; ÷; M 7 7 Câu 35: Trong mặt phẳng Oxy cho A ( 1; ) , B ( 3; −1) , C ( 6; ) Viết phương trình đường cao AH tam giác AB A x + y − = B x + y − = C x + y − = D x − y + = x = + t ( t ∈ R ) Tìm hệ số góc đường thẳng d Câu 36: Cho đường thẳng d có phương trình y = − 2t B -2 C D − r Câu 37: Viết phương trình tham số đường thẳng d qua A(−2;5) có vec tơ pháp tuyến n = (2; −1) A x = −2 + t x = − 2t x = −2 + 5t x = −2 + 2t A B C D y = + 2t y = + 5t y = 2−t y = 5−t Câu 38: Tìm phương trình đường thẳng d qua điểm M (2;5) cắt tia Ox, Oy tại A, B cho diện tích tam giác OAB vuông cân A x + y − 10 = x + y + = B x + y = C x + y − 10 = D x + y − = r Câu 39: Viết phương trình tổng quát đường thẳng d qua B (−3; 2) có vec tơ phương u = (4; −1) A −3x + y + 14 = B x + y − = C x − y + 14 = D x + y − = Câu 40: Tính cơsin góc hai đường thẳng d1 :2 x − y + = d : −3 x − y + = 2 2 B C D − 10 50 2 Câu 41: Trong mặt phẳng tọa độ Oxy, tính độ dài dây cung tạo đường thẳng d : y − x + 10 = đường A trịn (C) có tâm I ( −2;1) , bán kính R A 41 B 41 C D Câu 42: Tìm phương trình tổng quát đường thẳng d qua D (−5;3) vng góc với đường thẳng x = − 2t ∆: y = + 9t A x + y + 39 = B −2 x + y − 37 = C x + y − = D −5 x + y − 37 = Câu 43: Viết phương trình tổng quát đường thẳng qua hai điểm A ( 2; ) B ( 4;3) Trang GV Nguyễn Thị Kim Cương 2018- 2019 A x + y − 14 = B x + y − = C x + y − 14 = D x − y + = Câu 44: Cho đường thẳng d: x − y + = Điểm sau thuộc đường thẳng d? 1 1 A P ;1÷ B M − ;0 ÷ C N ;0 ÷ D Q(0;5) 4 4 Câu 45: Trong mặt phẳng tọa độ Oxy, cho điểm A ( −1;1) đường thẳng ∆ có phương trình x − y + = Biết đường thẳng d qua A song song với ∆ có phương trình mx + ny + t = ( m, n, t ∈ ¡ ) Tính giá trị biểu thức P = m − 2n + t 2 A P = 15 B P = C P = 11 D P = −6 Câu 46: Trong mặt phẳng Oxy, cho đường thẳng ∆ : −2 x + y − = Tìm đường thẳng song song với ∆ A ∆ : x − y − = B ∆1 : x + y + = C ∆1 : −2 x − y + = D ∆1 : −2 x + y + = x = 1+ t Câu 47: Cho hai điểm A ( −1; ) , B ( 3;1) đường thẳng d : Tìm tọa độ điểm C thuộc đường thẳng y = + t d cho tam giác ABC cân tại C 13 A ; ÷ 6 1 B − ; − ÷ 2 7 9 C ; ÷ D Khơng có điểm C thỏa yêu cầu 2 2 x = + t Câu 48: Hãy tìm số đo góc đường thẳng ∆ : trục tung y = − 4t A ϕ ; 760 B ϕ ; 140 Câu 49: Một đường thẳng xác định nếu biết C D ϕ ; 750 A điểm thuộc đường thẳng một vectơ phương đường thẳng B qua hai điểm A,B phân biệt C điểm thuộc đường thẳng vectơ pháp tuyến đường thẳng D vectơ phương vectơ pháp tuyến đường thẳng Câu 50: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : x − y + = điểm A(0;-1) A '(m, n) điểm đối xứng A qua đường thẳng d Tính giá trị biểu thức m − 2n A −1 B C −4 Câu 51: Chọn phát biểu : Góc hai đường thẳng mặt phẳng D A góc hai vectơ pháp tuyến hai đường thẳng C góc có số đo nhỏ 90o B góc hai vectơ phương hai đường thẳng D góc nhọn Câu 52: Cho đường thẳng d : x – y + = M ( 8; ) Tìm tọa độ điểm M ’ đối xứng với M qua d 7 A M ′ 7; ÷ B M ′(4;8) C M ′(6;5) D M ′(−20; −12) 2 Câu 53: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : x + y + = điểm A(1;-3) Có đường thẳng ∆ song song cách đường thẳng d khoảng 2 A B Không tồn tại đường thẳng thỏa yêu cầu toán C D Câu 54: Trong mặt phẳng Oxy cho A ( 2;3) B ( 3;1) Viết phương trình tham số đường thẳng A Trang GV Nguyễn Thị Kim Cương 2018- 2019 x = + 2t x = + 2t x = + 3t x = + t A B C D y = −2 + 3t y = −2 + 3t y = 3+t y = − 2t Câu 55: Tìm tọa độ điểm M thuộc Ox cho khoảng cách từ điểm M đến đường thẳng : x + y − = A M ( 4;0 ) ; M ( −1;0 ) B M ( 8;0 ) C M ( 4;0 ) D M ( 8;0 ) ; M ( 2;0 ) 2 Câu 56: Cho đường thẳng d : x − y − = Tìm tọa độ điểm M ( xM ; yM ) thuộc d cho x M + y M bé nhất −1 A M 0; ÷ B Câu 57: Cho đường thẳng d: r A n = (3; −4) B −2 3 1 M ; ÷ C M ; − ÷ D M 0; ÷ 13 13 13 26 2 x − y + = Tìm vec tơ pháp tuyến r r r C n = (4;3) D n = (3; 4) n = (−4;3) Câu 58: Trong mặt phẳng Oxy cho điểm M ( 1; ) Lập phương trình tổng quát đường thẳng ∆ qua M có hệ số góc k = −3 A −3x + y + = B x + y − = C x + y − = D x − y + = Câu 59: Viết phương trình tham số đường thẳng d biết d qua M (5;1) có hệ số góc k = x = + 3t A y = 1+ t x = + 5t x = + t B C y = + 1t y = + 3t x = − 2t Câu 60: Cho đường thẳng d: Tìm vec tơ phương d y = + 3t x = + 5t D y = 1+ t r r r r A u = (3; 2) B u = (2;3) C u = (4;5) D u = (−2;3) Câu 61: Cho đường thẳng d có phương trình Tìm vectơ phương đường thẳng d r r r r A u = ( 3; −2 ) B u = ( 2; −1) C u = ( 1; −2 ) D u = ( 2;3) Câu 62: Cho đường thẳng ∆ qua hai điểm A ( −4;0 ) , B ( 0;1) Tính độ dài đường kính đường tròn tâm C ( −2;1) tiếp xúc với ∆ A 16 17 17 B C 17 17 x = − 3t Câu 63: Cho đường thẳng d: Tìm vec tơ phương d y = −5 + 2t r r r r A u (−3; 2) B u (4; −5) C u (4; −3) D u (2;3) Câu 64: Trong mặt phẳng Oxy, cho tam giác ABC biết A(1;1), B ( −3; ) , C ( 2; −3 ) Tìm tọa độ điểm A’ đối xứng với A qua BC 3 3 1 1 1 B A ' ; ÷ C A ' − ; − ÷ D A ' ; ÷ 2 2 2 4 4 Câu 65: Trong mặt phẳng tọa độ Oxy, cho hai điểm M ( −3; ) , N ( 5;0 ) đường thẳng d : − x + y + = A A '(−2; −2) Trang GV Nguyễn Thị Kim Cương 2018- 2019 Biết H ( m; n ) điểm thuộc đường thẳng ∆ mà chu vi tam giác MNH nhỏ nhất Tính m n 1 B – 61 C 61 D − 61 61 r Câu 66: Viết phương trình tham số đường thẳng d qua A(4; −3) có vec tơ phương u (−1; 2) A x = − t x = − 3t x = + 2t x = −1 + 4t A B C D y = −3 + 2t y = −1 + 2t y = −3 + t y = − 3t Câu 67: Viết phương trình tổng quát đường thẳng d qua A(2; −4) B (1;0) A x − y + = B − x + y + 18 = C x − y − 12 = D x + y − = r Câu 68: Viết phương trình tổng quát đường thẳng d qua A(−3;1) có vec tơ pháp tuyến n(3; −4) A −3x + y + 13 = B x + y + = C x − y + 13 = D x − y − = Câu 69: Cho hai điểm A(3; −1) B ( 0;3) Tìm tọa độ điểm M trục Ox cho khoảng cách từ M đến đường thẳng AB AB ? A 17 ;0 ; −4;0 B 38 ;0 ; −4;0 C 0; 17 ;(0; −4) D 17 ;0 ) ) ÷( ÷( ÷ ÷ 2 Câu 70: Viết phương trình tổng quát đường thẳng d qua giao điểm hai đường thẳng d1 : x + y − = 0, d : x − y − = vng góc với đường thẳng d3 :2 x − y + = A x − y − = B x + y − = C x + y + = D x − y − 20 = x = Câu 71: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : Tìm phương trình tổng quát đường y = 5t thẳng ∆ A x + y = B x − = C x − y = D y = r Câu 72: Cho đường thẳng d qua điểm M ( −2;6 ) có vectơ phương u = ( 2; −1) Phương trình tham số d x = −2 + 6t x = − t x = −2 + 2t x = − 2t A B C D y = 2−t y = −2 + 6t y = 6−t y = −1 + 6t r Câu 73: Viết phương trình tham số đường thẳng d qua A(3; −1) có vec tơ phương u = (1; −2) x = + 3t x = + t x = − t x = + 2t A B C D y = −2 − t y = −1 − 2t y = − 2t y = −1 + t Câu 74: Trong mặt phẳng Oxy cho A ( 1; ) , B ( 3; −1) , C ( 6; ) Viết phương trình đường trung tuyến AM tam giác AB A x + y − = B x − y + = C x + y − = Câu 75: Tính khoảng cách từ M (1; −2) đến d: x − y + = A 12 B 12 C D x + y − = D 12 Trang GV Nguyễn Thị Kim Cương 2018- 2019 x = −1 + 3t Câu 76: Cho hai đường thẳng d1 : x − y + = d Tìm khẳng định y = t −3 −1 B d1 cắt d tại điểm N ; ÷ 12 1 1 C d1 trùng d D d1 cắt d tại điểm N ; ÷ 4 4 Câu 77: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1 : − x − y + = d : a x + y + 2a = Tìm A d1 song song d giá trị tham số a để đường thẳng d1 song song đường thẳng d A a = −2 C a = , a = −2 D a = x = − 5t Câu 78: Cho đường thẳng d có phương trình tham số Viết phương trình tổng quát đường y = + 4t thẳng d B Khơng có giá trị tham số a A −5 x + y + 11 = B x + y + 11 = C x + y − 17 = D x + y + 17 = x = + t ( t ∈ R ) Điểm sau không thuộc ∆ ? Câu 79: Trong mặt phẳng Oxy, cho đường thẳng ∆ : y = −1 + 2t A M ( 1, ) B M ( 2, −3) C M ( 4,1) D M ( 3, −1) Câu 80: Cho hai đường thẳng d : x – y + = 0, d′ :2 x – y – = Giá trị cosin góc hai đường thẳng ? π 2 A B C D − 58 58 Câu 81: Toạ độ hình chiếu M ( 4;1) đường thẳng (∆) : x – y + = : A 22 ; ÷ 5 B 14 ; 17 ÷ 5 C − 22 ; − D − 14 ; − 17 ÷ ÷ 5 5 Câu 82: Tìm phương trình đường thẳng d qua điểm M (2;5) cắt tia Ox, Oy tại A, B cho diện tích tam giác OAB nhỏ nhất A x + y = B x + y − 10 = C x + y − = D x + y − 20 = Câu 83: Viết phương trình tổng quát đường thẳng d biết d qua M (1;1) song song với đường thẳng ∆ : 2x − y +1 = A x + y − = B x + y − = C x + y − = D x − y − = Câu 84: Cho đường thẳng d qua điểm N ( 3; −2 ) song song với đường thẳng ∆ : x − y + = Hỏi phương trình sau phương trình tham số d? x = + 5t x = + 5t x = − 5t x = + 2t A B C D y = −2 − 2t y = −2 + 2t y = −2 + 2t y = −2 − 5t r Câu 85: Viết phương trình tổng quát đường thẳng d qua A(−3;1) có vec tơ pháp tuyến n = (3; −4) A x − y + 13 = B x + y + = C −3x + y + 13 = D x − y − = Trang GV Nguyễn Thị Kim Cương 2018- 2019 x = 3t ( t ∈ R ) Điểm sau thuộc ∆ ? Câu 86: Trong mặt phẳng Oxy, cho đường thẳng ∆ : y = −1 − 2t A M ( 2;3) B Câu 87: Cho đường thẳng d: r A n(3;0) B M ( 0; −1) C M ( 3; −2 ) D M ( 3; −1) x − = Tìm vectơ pháp tuyến d r r r C n(0;3) D n(4;3) n(3; −4) Câu 88: Tìm điểm M nằm đường thẳng d : x − y + = cách đều hai điểm E ( 0;3) , F ( 2; −1) A M ( −2;0 ) B M ( −3; −1) 1 2 D M ; ÷ 3 3 C M ( 3;1) x = − 2t Câu 89: Cho đường thẳng d: Tính hệ số góc k d y = −5 + 4t A k = − B k = − C k = − D k = −2 Câu 90: Tính khoảng cách từ điểm A ( 2;1) đến đường thẳng a có phương trình x − y = C D Câu 91: Trong mặt phẳng Oxy cho d : x − y + 10 = điểm M ( 3;0 ) Viết phương trình đường thẳng ∆ qua M ∆ ⊥ d A B A x − y − = B −2 x + y + = C x + y − = D x + y − = Câu 92: Trong mặt phẳng Oxy cho A ( 3;5 ) đường thẳng ∆ : x + y + = Tính khoảng cách từ điểm A đến đường thẳng ∆ A d ( A; ∆ ) = 27 B d ( A; ∆ ) = 28 C d ( A; ∆ ) = 28 D d ( A; ∆ ) = 28 34 Trang GV Nguyễn Thị Kim Cương 2018- 2019 DẠNG 2: ĐƯỜNG TRÒN Câu 1: Trong mặt phẳng tọa độ Oxy cho I (−3; −5) Hỏi I tâm đường tròn sau đây? 2 A Đường tròn ( C3 ) : x + y − x − 10 y − = B Đường tròn ( C2 ) : ( x − 3) + ( y − ) = C Đường tròn ( C1 ) : ( x + 3) + ( y + ) = 2 D Đường tròn ( C4 ) : x + y − 3x − y − = 2 2 2 Câu 2: Tìm m để đường thẳng ∆ : mx + y + = tiếp xúc với đường tròn ( C ) : x + y + x − y + = A m = 17 B m ∈ ∅ C m = 15 D m = 15 Câu 3: Cho đường tròn (C) : x + y − x + y + = Tìm mệnh đề mệnh đề sau A (C) có bán kính R = B (C) có tâm I (2; −4) C (C) cắt trục Oy tại hai điểm D (C) cắt trục Ox tại hai điểm Câu 4: Cho đường trịn (C) có tâm I ( 3; ) tiếp xúc với đường thẳng ∆ : x − y + = Tính bán kính R đường tròn (C) 4 4 A R = − B R = C R = − D R = 5 5 2 Câu 5: Cho đường tròn ( C ) : x + y − x + y = 0, đường thẳng d : x − y + = Lập phương trình tiếp tuyến ∆ với ( C ) biết ∆ vng góc với d A ( ∆ ) : x − y = B ( ∆ ) : x + y + 10 = ( ∆ ) : x + y − 10 = C ( ∆ ) : 3x − y − 20 = ( ∆ ) : x − y = D ∆ : − x + y − = ∆ : − x + y + 16 = Câu 6: Trong phương trình sau, phương trình phương trình đường trịn? A x + y − x − y + = C x + y − x − y + = B x + y − x − y + = D x + y − x − y = Câu 7: Tìm phương trình đường trịn có tâm I ( 1; −2 ) qua điểm A ( 5;1) ( x − 1) + ( y + ) = 25 2 C ( x − 1) + ( y + ) = 2 Câu 8: Cho đường tròn (C ) : ( x − 1) + ( y + 3) = A 2 B D ( x − 1) + ( y + ) = 17 2 ( x − ) + ( y − 3) = 25 2 có tâm I bán kính R Tìm tọa độ tâm I bán kính R A I ( 1; −3) , R = B I ( −1;3) , R = C I ( 1; −3) , R = D I ( −1;3) , R = Câu 9: Cho hai điểm A(1;5) , B (0; −2) Đường tròn (C) qua điểm A tiếp xúc với trục Oy tại B Viết phương trình đường trịn (C) A (C ) : ( x − 25 ) + ( y + ) = 625 2 11 625 C (C ) : x + y − ÷ = 7 49 B (C ) : ( x − 25 ) + ( y + ) = 25 2 D (C ) : ( x + 25 ) + ( y + ) = 625 2 Trang 10 GV Nguyễn Thị Kim Cương 2018- 2019 Câu 10: Lập phương trình đường trịn ( C ) qua ba diểm M ( −2; ) , N ( 5;5 ) , P ( 6; −2 ) 2 A ( C ) : x + y − x − y + 20 = 2 B ( C ) : x + y − x − y − 20 = 2 2 C ( C ) : x + y + x + y + 20 = D ( C ) : x + y + x + y − 20 = Câu 11: Trong số đường tròn sau, đường tròn tiếp xúc với trục Ox ? A x + y − x + 10 y = B x + y − 10 y + = C x + y − = D x + y + x + y + = Câu 12: Trong mặt phẳng với hệ trục tọa độ Oxy , cho đường trịn (C ) có phương trình ( x + 8) + ( y − 2017 ) = 169 Chu vi đường tròn (C ) bao nhiêu? A 26π B 338π C 13π D 169π Câu 13: Cho đường tròn (C) có tâm I thuộc trục Ox qua hai điểm M ( 1; −2 ) , N (3; −1) Viết phương trình đường trịn (C) 2 5 145 A (C ) : x + ÷ + y = 4 16 5 65 B (C ) : x − ÷ + y = 4 2 85 5 65 C (C ) : x + y − ÷ = D (C ) : x − ÷ + y = 2 4 16 Câu 14: Tìm tọa độ tâm I bán kính R đường trịn (C ) có phương trình x + y − x + 16 y = 10 A I ( 2; −4 ) R = 25 B I ( −2; ) R = C I ( 2; −4 ) R = D I ( 2; −4 ) R = 15 Câu 15: Trong mặt phẳng với hệ trục tọa độ Oxy , cho đường trịn (C ) có phương trình ( x + 1) + ( y + ) = 2 Tìm phương trình tiếp tuyến với (C ) qua điểm N ( −1;1) A 5x + y + − = B y = C x + y + = D y + = Câu 16: Tính bán kính R đường trịn ( C ) có phương trình x + y − x − y − = A R = B R = C R = D R = Câu 17: Tìm tọa độ tâm I đường tròn (C): x + y – x + y = A I ( −2; ) B I ( 1; −1) C I ( −1; −1) D I ( 1;1) Câu 18: Viết phương trình đường trịn (C) có đường kính AB biết: A ( 1; −1) ; B ( 5;7 ) A C ( x − ) + ( y − ) = 20 2 ( x − 3) + ( y − 3) = 20 2 B D ( x + ) + ( y + ) = 20 2 ( x − 3) + ( y − 3) = 80 2 Câu 19: Trong mặt phẳng với hệ trục tọa độ Oxy , viết phương trình đường trịn (C ) ngoại tiếp tam giác MNP , biết M ( 1; −2 ) , N ( −2;3) , P ( 0; −1) A x + y − 14 x − 10 y − 11 = B x + y + 14 x + 10 y + 11 = Trang 11 GV Nguyễn Thị Kim Cương 2018- 2019 74 62 105 x+ y+ = D x + y + x + y − = 11 11 11 Câu 20: Cho hình vng ABCD , biết A ( 1; ) , C ( 3;0 ) Viết phương trình đường trịn ( C ) ngoại tiếp hình vng ABCD 2 C x + y + A (C ) : ( x − ) + ( y − 1) = B (C ) : ( x − ) + ( y − 1) = C (C ) : ( x − ) + ( y − 1) = D (C ) : ( x − 1) + ( y − ) = 2 2 2 2 Câu 21: Cho hai đường tròn (C ) : ( x + 4) + ( y + 4) = 4m ( m > ) (C ') : x + y − x − y − = Tìm m để (C ), (C') tiếp xúc ngồi 15 15 B m = C m = D m = 2 2 Câu 22: Cho đường tròn ( C ) : x + y − x − y − = đường thẳng d : x − y − = Viết phương trình A m = tiếp tuyến ( C ) song song với d A ∆ : x − y − = B ∆ : x − y − = C ∆ : x + y + − = D ∆ : x − y + 16 = Câu 23: Cho đường trịn ( C ) có phương trình ( x − ) + ( y + 3) = R , với R bán kính ( C ) Biết 2 M ( −1; ) thuộc ( C ) Tính bán kính R A R = 16 B R = 34 C R = D R = 34 Câu 24: Tìm phương trình đường trịn (C ) có tâm I (−1; 2) tiếp xúc với đường thẳng ∆ : x − y + = 4 2 B ( x + 1) + ( y − ) = 36 2 2 C ( x − 1) + ( y − ) = D ( x − 1) + ( y − ) = 5 2 Câu 25: Viết phương trình tiếp tuyến với đường tròn ( C ) : ( x − ) + ( y − 3) = tại điểm M ( 3; ) thuộc A ( x + 1) + ( y − ) = 2 đường tròn ( C ) A x + y − = B x + y − 43 = C x − y + = D x + y − = Câu 26: Cho A ( 1;1) , B ( 7;5 ) , viết phương trình đường trịn có đường kính AB A C ( x − 1) + ( y − 1) = 13 2 ( x − ) + ( y − 3) = 52 Câu 27: 2 B ( x − ) + ( y − 3) = 13 2 ( x − ) + ( y − ) = 13 2 Tìm phương trình tiếp tuyến với đường tròn (C ) : ( x − 1) + ( y + ) = 25 D 2 tại điểm M (4; 2) A x − y − = B x − 12 = C x + y − 20 = D x + y − = 2 Câu 28: Cho đường trịn ( C ) có phương trình x + y − x + y − = điểm M ( 3;1) Gọi A B hai tiếp điểm hai tiếp tuyến kẻ từ điểm M đến ( C ) Tính độ dài dây cung AB Trang 12 GV Nguyễn Thị Kim Cương 2018- 2019 A AB = 2 B AB = C AB = D AB = Câu 29: Viết phương trình đường trịn ( C ) có đường kính AB với A ( −1; ) B ( 3;8 ) A (C ) : ( x − 1) + ( y − ) = 13 B (C ) : ( x − 1) + ( y − ) = 52 C (C ) : ( x − 1) + ( y − ) = 13 D (C ) : ( x − ) + ( y − 10 ) = 73 2 2 2 2 2 Câu 30: Trong mặt phẳng tọa độ Oxy, viết phương trình tiếp tuyến đường tròn ( C ) x + y = tại điểm M ( 1;1) A x + y = B x − y = C x + y + = Câu 31: Viết phương trình đường trịn qua điểm A(1; −2), B(1; 2), C(5; 2) D x + y − = A (C) : x + y − x − = B (C) : x + y − x + = C (C) : x + y + x − = D (C) : x + y + x + y = Câu 32: Cho đường tròn (C ) có đường kính AB với A(−1; 4), B (2;6) Tìm tọa độ tâm I đường trịn (C ) 13 13 3 1 ; A B ( 1;10 ) C ;5 ÷ D ;5 ÷ ÷ ÷ 2 2 Câu 33: Viết phương trình đường trịn ( C ) có tâm I ( 3; −2 ) bán kính R = ( x − 3) + ( y − ) = 49 2 C D ( x + 3) + ( y − ) = 49 2 Câu 34: Tìm tọa tâm I bán kính R đường tròn (C): ( x + ) + ( y − 1) = A I ( −2;1) ; R = B I ( 2; −1) ; R = C I ( 2; −1) ; R = 16 D I ( −2;1) ; Câu 35: Viết phương trình đường trịn ( C ) có tâm I ( 3; ) qua M ( 5;3) A A C ( x − 3) + ( y + ) = 14 2 ( x − 3) + ( y + ) = 49 2 B ( x − ) + ( y − 1) = 2 ( x − ) + ( y − 3) = 2 R = 16 ( x − 3) + ( y − ) = 2 D ( x − 3) + ( y − ) = B 2 Câu 36: Viết phương trình đường trịn ( C ) có tâm I ( 3; ) tiếp xúc với đường thẳng ∆ có phương trình x − y − = A ( C ) : ( x − 3) + ( y − ) = 2 25 B ( C ) : ( x + 3) + ( y + ) = 2 2 D ( C ) : ( x − 3) + ( y − ) = Oxy ( C ) có phương trình Câu 37: Trong mặt phẳng với hệ trục tọa độ , cho đường tròn x + y − x − y − 83 = đường thẳng d : x + y + 20 = Viết phương trình đường thẳng ∆ song song với đường thẳng d cắt đường tròn (C ) tạo thành dây cung có độ dài lớn nhất C ( C ) : ( x − 3) + ( y − ) = 2 A x + y − = B x + y − = C x − y = D x + y − = Câu 38: Viết phương trình đường trịn ( C ) có tâm I ( −1; ) bình phương bán kính Trang 13 GV Nguyễn Thị Kim Cương 2018- 2019 A C ( x + 1) + ( y − ) = 2 ( x + 1) + ( y − ) = 2 B D ( x − 1) + ( y + ) = 2 ( x − 1) + ( y + ) = 2 Câu 39: Trong phương trình sau đây, phương trình phương trình đường trịn ? A x + y − x = B x + y − x − y + = C D x − y − x − y − = Câu 40: Tìm tọa độ tâm I đường trịn ( C ) có phương trình x + y − x + y − = A I ( 1; −2 ) B I ( −1; ) C I ( −2; ) D I ( 0;6 ) Câu 41: Cho đường trịn (C) có phương trình: ( x + 1) + ( y + ) = Tìm m để đường thẳng ∆ : 3x − y + m = tiếp xúc với đường tròn (C) A m = −5 m = 15 B m = m = −15 C m = m = 21 D m = −1 m = −21 Câu 42: Đường trịn ( C ) có tâm I ( 2; −1) cắt đường thẳng d : x − y + = theo dây cung có độ dài 2 Tìm phương trình đường trịn ( C ) 2 A ( C ) : x + y − x + y − 13 = 2 B ( C ) : x + y − x + y − 13 = 2 C ( C ) : x + y − x + y − 40 = 2 D ( C ) : x + y − x + y + 23 = Câu 43: Viết phương trình đường trịn có tâm I ( 3; ) tiếp xúc với ∆ : 3x + 12 y − 40 = 13 2 2 C ( x − 3) + ( y − ) = D ( x + 3) + ( y + ) = 169 Câu 44: Cho đường tròn ( C ) : x + y + x + y − 20 = có tâm I bán kính R Tìm tọa độ I bán kính A ( x − 3) + ( y − ) = 2 169 B ( x − 3) + ( y − 2) = R A I ( −2; −1) , R = 25 B I ( −2; −1) , R = C I ( −2; −1) , R = 17 D I ( −2; −1) , R = C I ( −4;6 ) D I ( 4; −6 ) 2 Câu 45: Cho đường tròn ( C ) : x + y − x + y − = có tâm điểm I Tìm tọa độ I A I ( 2; −3) B I ( −2;3) Câu 46: Trong đường trịn có phương trình sau đây, đường trịn qua gốc tọa độ O ( 0;0 ) ? A x + y − x − y + = B ( x − 3) + ( y − ) = 25 C x + y − x − y + = D x + y = 2 Câu 47: Tìm tọa độ tâm I bán kính R đường trịn ( x − ) + ( x + 3) = A I ( 2; −3) R = C I ( −2;3) R = B I ( 2; −3) R = D I ( −2;3) R = Trang 14 GV Nguyễn Thị Kim Cương 2018- 2019 Câu 48: Cho đường tròn ( C ) có phương trình x + y − x + y = −12 điểm M (4; −2) Chọn khẳng định A M nằm đường tròn ( C ) B M nằm đường tròn ( C ) uuur D IM = ( −1;0 ) C M nằm ngồi đường trịn ( C ) Câu 49: Cho đường tròn ( C ) có đường kính AB với A ( 3; −4 ) B ( 1; ) Tìm tọa độ tâm I đường tròn ( C) A I ( 1; −3) B I ( 4; −2 ) C I ( 2; −1) D I ( −2;6 ) Câu 50: Trong mặt phẳng tọa độ Oxy, cho điểm M ( 2;3) Hỏi M thuộc đường tròn sau đây? A ( C2 ) : ( x − ) + y = B ( C3 ) : x + ( y − ) = 2 C ( C1 ) : ( x − ) + y = D ( C4 ) : ( x − ) + ( y − 3) = DẠNG 3: PHƯƠNG TRÌNH ELIP x2 y2 E ( ) Câu 1: Cho elip có phương trình + = Tìm độ dài trục lớn A1 A2 elip ( E ) 25 A A1 A2 = 10 B A1 A2 = Câu 2: Cho elip ( E ) : C A1 A2 = D A1 A2 = x y + = Tìm độ dài trục lớn elip ( E ) 100 64 A 200 B 16 C 64 D 20 Câu 3: Trong mặt phẳng với hệ trục tọa độ Oxy , cho elip ( E ) có độ dài trục lớn 12 độ dài trục nhỏ 10 Viết phương trình elip ( E ) x2 y x2 y x2 y2 x2 y B C D + = + = + = + =1 12 10 144 100 36 25 Câu 4: Một xưởng lắp ráp tơ có mặt cắt thẳng đứng có dạng nửa elip Cho biết tiêu cự elip 24m bề rộng xưởng 26m Tính chiều cao xưởng A A 13 m B 12 m C 10 m D m Câu 5: Lập phương trình tắc elip ( E ) có độ dài trục lớn độ dài trục nhỏ A ( E) : x2 y + =1 B ( E) : x2 y2 + =1 16 C ( E) : x2 y2 + = 64 36 D ( E) : x2 y + =1 16 x2 y2 + = có hai tiêu điểm F1 ; F2 Gọi M điểm có hồnh độ dương nằm (E) góc F1MF2 vng Tìm hoành độ điểm M Câu 6: Cho elip (E): A B 142 Câu 7: Cho elip ( E ) có phương trình tắc C ± 14 D 14 x2 y + = Gọi 2c tiêu cự elip (E) Trong mệnh đề a b2 sau, mệnh đề đúng? Trang 15 GV Nguyễn Thị Kim Cương 2018- 2019 A c = a + b C a = b + c x2 y2 Câu 8: Xác định tọa độ tiêu điểm elip ( E ) : + =1 25 ( F ( 0; − B a = b − c ) ( 34;0 ) 34 ) , F ( 0; 34 ) A F1 − 34;0 , F2 B F1 ( 0; −4 ) , F2 ( 0; ) C D F1 ( −4;0 ) , F2 ( 4;0 ) D c = a + b Câu 9: Trong phương trình sau, phương trình phương trình đường elip? x2 y x2 y x2 y A B C D x + y = − = + = + = −1 1 4 x Câu 10: Xác định tọa độ đỉnh ( E ) : + y = A A1 ( −9;0 ) , A2 ( 9;0 ) , B1 ( 0; −1) , B2 ( 0;1) B A1 ( −1;0 ) , A2 ( 1;0 ) , B1 ( 0; −3) , B2 ( 0;3) C A1 ( −3;0 ) , A2 ( 3;0 ) , B1 ( 0; −1) , B2 ( 0;1) D A1 ( −1;0 ) , A2 ( 1;0 ) , B1 ( 0; −9 ) , B2 ( 0;9 ) Câu 11: Tìm phương trình tắc elip ( E ) có trục lớn gấp đơi trục bé có tiêu cự 5x2 y2 x2 x2 y2 5x2 y 2 A ( E ) : B ( E ) : + y = C ( E ) : + D ( E ) : + = = + = 12 16 48 12 Câu 12: Viết phương trình tắc elip ( E ) có độ dài trục lớn độ dài trục nhỏ x2 y x2 y x2 y x2 y B ( E ) : + C ( E ) : + D ( E ) : + + = = = = 36 16 Câu 13: Một đường hầm xuyên qua núi có chiều rộng 20m, mặt cắt đứng đường hầm có dạng nửa elip hình vẽ Biết elip có tiêu cự 10m Hãy tìm chiều cao đường hầm đó? A ( E) : A 8, 7(m) Câu 14: Cho elip (E): A ( 0; ±4 ) B 11, 2(m) C 17,3( m) x2 y2 + = Tìm tọa độ tiêu điểm (E) 25 16 B ( 0; ±3) C ( ±3;0 ) D 22, 4(m) D ( ±5;0 ) D 13 Câu 15: Xác định tiêu cự elip ( E ) có phương trình x + y − 36 = A 13 B C 5 Câu 16: Cho elip ( E ) có hai đỉnh ( 0; −4 ) , ( 0; ) hai tiêu điểm ( −3;0 ) , ( 3;0 ) Tìm hai đỉnh lại elip ( E) A ( −5;0 ) , ( 5;0 ) B (− )( 5;0 , ) 5;0 C ( 0; −5) , ( 0;5) D ( 0; − ) , ( 0; ) Trang 16 GV Nguyễn Thị Kim Cương 2018- 2019 x2 y2 + = Tìm tiêu cự (E) 25 A B 32 C D 10 ( E ) ( E ) Câu 18: Tìm phương trình tắc elip biết có trục lớn gấp đơi trục bé qua điểm M (2; −2) Câu 17: Cho elip (E) : x2 y x2 y2 x2 y x2 y2 A ( E ) : + B ( E ) : + C ( E ) : + D ( E ) : + =1 =1 =1 =1 20 80 20 Câu 19: Tìm phương trình tắc elip (E) biết độ dài trục lớn 10 tiêu cự x2 y x2 y2 x2 y2 x2 y2 B C D + =1 + =1 + =1 + =1 100 81 25 34 25 16 100 64 Câu 20: Lập phương trình tắc elip ( E ) có độ trục bé 8, tiêu cự A x2 y A ( E ) : + =1 16 x2 y2 B ( E ) : + =1 16 25 x2 y2 x2 y2 C ( E ) : + D ( E ) : + = = 25 16 25 x2 y Câu 21: Cho elip ( E ) có phương trình tắc + = Trong điểm có tọa độ sau đây, điểm 100 64 tiêu điểm elip ( E ) ? A (2 41;0) B (0; −6) C (−36;0) D (−6;0) Câu 22: Cho elip (E) biết đỉnh có toạ độ ( 0;3) tiêu cự 8.Tìm phương trình tắc (E) x2 y x2 y2 x2 y2 x2 y B C D − =1 + =1 + = + = 25 25 73 16 Câu 23: Cho elip ( E ) có tiêu điểm F1 ( 4;0 ) có đỉnh A ( 5;0 ) Viết phương trình tắc elip ( E ) A x y x2 y2 E : + = C ( ) D ( E ) : + = 25 b Câu 24: Một elip ( E ) có độ dài trục nhỏ 10, tỉ số = Tìm phương trình tắc ( E ) c 12 x2 y A ( E ) : + = x2 y B ( E ) : + = 25 16 x2 y x2 y2 x2 y2 x2 y C ( E ) : D ( E ) : + + = B ( E ) : + = + = = 119 25 676 100 169 25 13 Câu 25: Cho elip ( E ) có hai tiêu điểm F1 , F2 có độ dài trục lớn 2a Trong mệnh đề sau, mệnh đề đúng? A ( E) : A 2a > F1 F2 B 4a = F1 F2 Câu 26: Trong mặt phẳng tọa độ Oxy, cho elip ( E ) : A A1 A2 = B A1 A2 = C 2a = F1 F2 D 2a < F1 F2 x y + = Tìm độ dài trục lớn A1 A2 elip ( E ) 25 C A1 A2 = D A1 A2 = 10 Câu 27: Lập phương trình tắc elip ( E ) có độ trục lớn 10, tiêu cự Trang 17 GV Nguyễn Thị Kim Cương 2018- 2019 A ( E) : x2 y + =1 16 Câu 28: Cho elip (E): A 48 B ( E) : x2 y + = 25 C ( E) : x2 y2 + = 25 16 x2 y + = Tính diện tích hình chữ nhật sở (E) 16 B 14 C 12 D ( E) : x2 y + =1 16 25 D 28 Câu 29: Tìm phương trình tắc elip có tiêu cự độ dài trục lớn 10 x2 y2 x2 y2 x2 y2 x2 y2 A B C D + =1 + =1 + =1 + = −1 25 16 100 64 25 25 16 Câu 30: Cho elip (E): A x2 y + = Tìm độ dài trục nhỏ (E) B C Câu 31: Xác định tiêu cự F1 F2 elip ( E ) : A F1 F2 = 13 B F1 F2 = 13 D x y + =1 C F1 F2 = D F1 F2 = Trang 18