PHAN TICH TONG QUAT NHUNG DAU HIEU CUA DANG JORDAN Of HE DONG HOC DA CHIEU Phan Nguyin Hdi Hgc vien ky thudt qudn sir Tdm tdt: Di xudt phuong phdp gidi tich hiiu qua cho viec nghien ciru nhirng hi ddng hgc da chiiu vdi muc dich tim kiim nhirng hi cd dgng Jordan Xdy dung md hinh todn hgc vd thugt todn ddnh gid su tdn tgi nhung ddu hi?u cua dgng Jordan a hi da chiiu, tren ca sd dd cd thi thuc hiin dugrc viec phdn tdch chung thdnh cdc hi cd dgng Jordan Abstract: An efficient analytical method of studying multidimensional systems with a purpose of extracting controllable sub-systems of the Jordan forms is presented A mathematical model and algorithms for estimation of the presence of "Jordan" signs in controllable multidimensional systems on the basis of which a decomposition of these multidimensional systems into Jordan sub-systems lias been built L MOf DAU Trong ly thuyet dieu khien, dan^ Jordan (Jordan form) Id mgt dang cdu tnic cua cdc he ddng hgc mdt ddu vdo [1,2], dang cdu tnic cd vai trd rat Idn ITnh vyc tdng hgp ludt dieu khien cho cdc he thdng ky thudt Nhirng he cd dang ndy Id nhiing he dieu khien dugc, va ludt dilu khiln cho chiing ludn de dang tdng hgp dugc [1,5,6] Dang Jordan, vl mat md hinh todn hgc, bilu diln mdt ldp vd ban cdc he dgng hgc, mat khdc thyc te ciing cd rdt nhieu he thdng ky thudt cd dang ndy Tir nhung vai trd to Idn tren, viec nghien ciiu tim hieu sdu them nhdm muc dfch phdt triln, tdng qudt hda ly thuylt vl dang Jordan cd y nghia rdt quan ygng Mdt hudng phdt triln cd thi thdy n^ay dugc Id vdn dl xay dyng ly thuylt ve dang Jordan tmdng hgp he ddng hgc cd nhieu ddu vdo Mdt each tiep can de phyc vy cho viec gidi quyet vdn dk ndy Id xdy dyng khdi niem vl he dang Jordan, cdch lira chgn chiing tir he nhilu ddu vdo va nghien ciiru nhung khd nang phan tdch mdt he nhieu ddu vdo nhiing he cd dang Jordan II DAT VAN DE Cho he da chilu bdc n vdi m ddu vdo [m