Tgp Chi Khoa Hpc Gido Due Ky Thugt (32/2015) Trudng Dgi Hpc SuPhgm Ky Thugt TR Hd ChiMinh XAC DINH NANG SUAT SU* DVNG VA DIEU KIEN LAM VIEC CUA MAY X6l DAT DETERMINATION OF EXPLOITABLE EFFICIENCY AND WORKING CONDITIONS OF DIGGING MACHINE Nguyin Danh Son Trudng Dgi hoc Cong nghiep TP.HCM NgSy tda soan nh$n bai 19/3/2015, ng^y phdn bi$n d^nh gi§ 28/3/2015 ngiiy chap nh$n dSng 06/4/2015 TOM T A T Ndng sudt mdy Id mgt nhirng thong so quan trgng xdc lap nin cdc thong sS cua mdy nhiing dieu kien su dung Bdi bdo dua cong thuc gidi tich di xdc dinh ndng sudt su dung dieu ki$n ldm viec cua mdy x&i ddt Cong thirc ndy dudi dgng hdm so cua cdc thong sd ky thudt su dung vd diiu kiin ldm viic ciia mdy x&i Cong thuc ly thuyet phdn dnh tinh chdt diin tiin ciia qud trinh x&i ddt No CO thi dugc si^ di^ng thuc hiin tinh todn xdc dinh hiiu qud cdc mdy x&i vd tdi iru hoa chung Tie khoa: Mdy x&i ddt, ndng sudt ABSTRACT Efficiency is one of important parameters of machine, which affirm parameters of machine in working conditions The paper come up with analytic formula to determine exploitable efficiency and working conditions of digging machine Theoretical formula describes the character of digging progress She can be used in calculation of digging machine effect and in optimization Keywords: Digging machine, efficiency I DAT VAN BE Nang sudt may la mpt h-ong nhiing thdng sd quan frpng xac lap nen cac thdng sd cua may nhung didu kidn sii dung Vi?e tdi uu hda cac thdng sd va dieu kien sir dung may - J J- J '' " j' • xoi xay dung dan dung va xay dyng giao thong ~ I ' ! • „ * "' i i " *!,•-* r v " van tai la mpt van de cap thiet Dieu quan trpng la xac dinh khdi lugng tdi uu eiia may xoi vi luc keo eua may xdi duge xac dinh bdi khdi lugng va h? sd bam ciia m^y xdi vdi ddt.Khdi lugng tdi uu cua may xdi dugc xac lap h-dn co sd phan tich cac chi tieu hieu qua lam viec la thdi gian mdt chu ky lam vi?c va nang sudt cua may, cho nen viec xac dinh nang suat may la van de quan trpng nhat II GIAI QUYET VAN DE Trirdc hk ta khii quat l^i nhirng cong trinh nghien ciru ve viec xac dinh nSng suat c^ia m i y x6i ddt; , , , , , , , Da CO nhihiR cone hum nghien cuu ve xac , f , , -.^; dinh nang& suat eua mayJ xoi dat sau day: •' Trong cdng trinh cua T.V.Alechxeeva [4] nang sudt sir dyng ciia may xdi dugc xac dinh theo cdng thiic: D,k„N ^^^^^ ~ ^^A ^^ ^-^ ' L"*'-^.)^' ni^-s^VA ^ ^^ g.chidu rdng xdi(m); h- chidu sau ^^^ j ^ „ g binh(m); L,^ - chiSu dai hanh hinh Tgp Chi Khoa Hpc Gido Due Ky Thugt (32/2015) Trudng Bgi Hpc Su Phgm Ky Thugt TR Ho ChiMinh lam viec trung bmh theo mdt hudng; k^ - he sd tinh ddn tdn thdt thdi gian diing may ddy va sy tang tdc dp lam viec xdi; k, - h e sd sir dung thdi gian; t - thdi gian mdt lan quay dau d cudi doan thi cdng Trong cdng Irinh ciia Giao su V.I.Baldvnhep nang suat ciia may xdi dugc xac dinh theo edng thirc: D,k„N thi cdng dudng dtd da dd xudt cdng thiic xac dinh nang suat cua may xdi nhu sau: Q - lOOOFv do: F - dien tich tifit dien ngang cua do^n thi cdng; v - tdc dd chuyen ddng cua may xdi Trong cdng trinh ciia G.V.Kirildv [9] nang sudt cua may xdi dugc xac dinh theo cdng thirc: mVh Tu M„"Xvi^-Sy,^ ti(\-5„)T, dd: D,- he sd ty le; k^^ - he sd tinh den chi tieu tin cay ciia may; N- cdng suat danh nghia cua dpng co; k^ - he sd xdi; k - he sd tmh d§n cac nguyen cdng phy ciia hanh trinh lam vipc; T^, T^ - lyc keo xdi va ehay khdng tai; 1^ - lyc bam; d^, d^^ - cac he sd trugt xdi va ehay khdng tai Trong cdng trinh cua D.P.Vdlcdp va VIA Cricun [6]nang suat cua may xdi dugc xac dinh theo cdng thiic: Trong dd: B - chieu rpng xdi; h^ - ehieu sSu xdi; L^ - chieu dai hanh trinh xdi theo mpt hudng; k ^ - he sd phii; t - thdi gian mpt lan quay dau d cudi doan thi cdng Trong cdng trinh cua A.M.Khdldddv, V.V Nhitke, L.V Nadardv [10] nang sudt ciia may xdi dugc xac dinh theo cdng thiic: Khi thi cdng theo each quay trd dau may: 0= B!h.,k,k, Bhvk,,, k,n Khi thi cdng theo so dd thoi: Trong dd: B - chieu rdng xdi; h^ - chieu sau xdi; L - chieu dai quang dudng xdi; v tdc dp di chuyen cua may xdi; t^ - thdi gian co ddng cua may Trong cdng trinh ciia lU.A Vehdv [7] nang suat ciia may xdi dugc xac dinh theo cdng thiic: k.n Trong do: B - chieu rdng xdi hiru ich; h chieu day Idp xdi hiiu ich; v - tdc dp lam viec cua may xdi;k j^ - he sd phii ciia cac vung xdi; k, - he sd xet den tinh chdt cua lugt xdi ( xdi song song hay xdi chii thap), n - sd lugt xdi VS.Dalenxki cdng trinh ciia minh [8] nghien cuu lam viec cua cac may xdi Blh,,k,.k, Trong do: B - ehieu rdng xdi sau mdi vet may ehay; - chieu dai doan thi cdng; h^^^ chidu sau xdi trung binh; k - he sd phu; k^ - he sd sii dyng may theo thdi gian; t - thdi gian quay dau may; v^ - tdc dp trung bmh cua hanh triiji lam viec; v^ - tdc dp cua hanh trinh ehay ngup'c; n - sd lan di lai cua may hen cung mdt vet thi cdng Trong cdng trinh cua A.D.Sars [11] nang sudt ciia may xdi dugc tinh bdng cdng thiic: Q = 1000vbh/(k,m) dd: v - tdc dp chuyen ddng tinh toan ciia may; b - khoang each giiia cac vet xdi; h - chieu sau xdi tinh toan; kj - he sd dac tnmg Tgp Chi Khoa Hoc Gido Bgc Ky Thudt (32/2015) Truing Bgi Hge Su Phgm Ky Thugt TR Ho ChiMinh cho so lugt d lai ciia may theo mgt huong; m s6 lugt di lai tren cung mgt vet thi cong Trong cong trinh cua B.D.Dakhartruc, V.D Sloido, A.A latkin [12] nang suat cua may xoi dugc xac dinh theo eong thiic: Bhlk„, Q= I /IOOOv + r / 0 Nghien ciiu each xac dinh nang suat sii dyng cua may xdi theo cac cdng trinh da neu tren ta nhan thay rang cac cdng thiic chua gan ket dugc hoae gan ket chua day du cac thdng sd ky thuat ciia may nhu cdng suat ddng CO, khdi lugng may, tdc dp lam viec, chieu rdng, chieu dai va dp sau xdi ciing nhu cac thdng sd ve dieu kien dat dai nhu dp ciing ciia dat, luc can xdi dat rieng Ben canh dd cac cdng thiic cimg chua lot ta dugc dien tien cua qua trinh xdi dat Diln tien ciia qua trinh xdi dat bao gdm cac nguyen cdng nhu: dua luoi xdi vao dat, xdi dat va ehay nguge trd ve cd ke den cac nguyen cdng phu nhu nang luoi xdi, CO dpng, tang tdc va phanh ham may De giai quyet van de va lap cdng thiic giai tich xae dinh nang suat ta bat dau bang su xac dinh thdi gian chu ky lam viec cua nd: Thdi gian chu ky lam viec cua may xdi dugc tinh dudi dang tdng cac thdi gian cho mdi nguyen cdng chu ky: ^^.,5 Cac nguyen cdng chinh ciia qua trinh lam viec la nguyen cdng xdi t^ va nguyen cdng trd ve t^g Thdi gian cho cac nguyen cdng cdn lai mang tinh chdt phy thi hgp ly la tinh bdng he sd Tren co sd gia thiet thdi gian ciia qua trinh lam viec cd the viet dudi dang tdng ciia hai sd hang: 'e.-kp.J.+k^„^.l„^, Trong do: V - the h'ch dat dugc xdi sau mdt chu ky lam viec; k^ - he sd tinh ddn trinh dp chuyen mdn cua ngudi didu khien may;T^|^ thdi gian ciia mgt chu ky lam viec ^L-^K+f.+f nang, ludi, co ddng, tang tdc, phanh ham, s (1) Trong dd: t^ - thdi gian cho nguyen cdng dua luoi xdi vao ddt, s t^ - thdi gian cho nguyen cdng xdi ddt, s t^ - thdi gian cho nguyen cdng trd vd ( ehay nguge), s t ^ - thdi gian cho cac nguyen cdng phu nhu (2) Trong dd: k ^- he sd tinh den thdi gian dua ludi xdi vao dat la hi sd dugc xac dinh bang thyc nghiem theo cdng thiic: *-(-9 (3) kpk, = 1,2- 1,5 - he so tinh den thoi gian eg dgng, tang toe, phanh ham (4) tpL > 1,7 Thai gian cua nguyen cong xoi dugc xac dinh nhu ty so cong ciia luc can xoi voi cong sudt ma may san de thuc hien nguyen cong nay: (5) N "(%-/±/Xl-^,>7*, (6) - he sd tinh den tinh chat keo bam cua may xdi do: k^ ^ ~ lyc can xdi rieng, N/m^, b^- chieu rpng rang xdi, m; n - sd rang xdi; h - chieu sau xdi,m; N quang dudng xdi,m; g - gia tdc roi ty do, g = 9,81 m/s^; h- hieu sudt hiiydn ddng ciia may xdi, h ^ 0,85; j^^ - he sd bam cua may xdi, j = 0,6 -0,7; f - he sd can di chuyen cua may xdi , gia tri Tgp Chi Khoa Hpc Gido Dae Ky Thugt (32/2015) Trudng Bgi Hpc SuPhgm Ky Thugt TR Hd Chi Mmh thuc nghiem f= 0,1-0,2; i - ddc dia hinh, i =0- 0,05; (2): _ ' d - he sd trugt ciia may xdi dat d^ = 0,15 N -6,2; ' »'[^ - tdc dp lam viec trung binh cua may xdi, v,^-=0,5-l,5m/s; k^ - he sd tinh den kha nang tang tdc cua may, k',>i"k@lCac thdng sd cdn lai da ky hieu d tren Thdi gian cho nguyen cdng trd ve vi tri ban dau hoae thdi gian ehay nguge t^ dugc xac dinh J theo cdng thiic: ', = - ^ =- ^ s (7), " ", Trong do: - chieu dai quang duong ehay nguge lay bang ehieu dai quang duong xai 1^^ = 1,, m; /^ - toe ehay nguge hay toe khong tai Tir cdng thiic (11) ta nhan thdy thdi gian chu ky lam viec cua may phy thudc vao thdi gian xdi va thdi gian hanh trinh ehay nguge Thdi gian xdi thi ty le nghich vdi khdi lugng ciia may, cdn thdi gian ehay nguge thi ty le thuan vdi khdi lugng va ty le nghich vdi cdng suat ciia may The tich dat dugc xdi sau mgt chu ky lam viec ciia may dugc xac dinh theo cdng thiic: q^-k.b^.h^.I^n m' (12) dd: k - he sd syt Id eua ranh xdi, xac dinh bang thuc nghiem, k^ = 2-5 Nang sudt cua mdy xdi nhu mpt hong nhihig chi tieu hieu qua dugc xhc dinh theo cdng thiic: Tri so ciia v^ dugc xac dinh qua cac thong s6 ky thuat- sCc dung may xoi va qua trinh xai: ^1? m^/h (13) N 'm.gfe-/±/Xl-'5,>-„„ , m/s (8) Tren co so xem xet nhiing van de tren ta dugc: 3600 A:,„ Trong dd: s/h (14) '^^ - he sd thii nguydn; k - he so su dyng may theo thdi gian, xac dinh bang thuc nghidm Thay gia hi ciia t^,^ h j ( l l ) va q^ hi(12) vao (13) va nit gpn cudi ciing ta nhan dugc nang suat su dyng cua may xdi; - he sd tinh den anh hudng cua tinh chat keo bam ciia may xdi qua trinh ehay nguge; Q= (15) "ig-^w N- edng suat cua ddng co; d^ - he sd trugt ciia may xdi hanh trinh nguge, d^g = 0,1-0,2; k^j^ I - he sd chat tai dgng co thuc hien nguyen cdng ehay nguge, k^,,,= 0,8 - 0,85 Nhu vay cd the nhan dugc thdi gian diu ky lam viec cua may xdi dudi dang ham sd ciia eac thdng sd ky thuat sii dung la chi tieu hieu qua ciia qua trinh xdi thay (5) va (9) vao Tir cdng thiic (15) ta nhan thay rdng mudn tang nang sudt may phai giam thdi gian chu ky lam viec cua may, ma thdi gian chu ky lam viec ciia may thi phu thudc vao khdi lugng may, vay thi nang sudt may cung phy thupe vao khdi lugng ciia may R6 rang la cd mdt tri sd cua khoi lugng may ma tai dd se dat dugc thdi gian ehu ky lam vi$c tdi thi§u ciia may va Tgp Chi Khoa Hpc Gido Due Ky Thugt (32/2015) Trudng Dgi Hpc Su Phgm Ky Thugt TR Hd ChiMinh tai mdt gia hi nhdt dinh cua khdi lugng may se dat nang sudt tdi da Trong bai bao ta khdng giai quydt bai toan xac dinh cac thdng sd tdi uu ciia may xdi ma dimg lai d viec xac lap quan he giiia nang suat may vdi cac thdng sd ky thuat va dieu kien sii dyng ciia nd Nang suat ky thuat cua may xdi dugc dac xdi ddt cd dp ciing C^^ = 40-50, may xdi lap tren may keo cd cdng sudt 242 KW, khdi lugng m = 52,6Tan va may keo cd cdng suat 300 KW, khdi lugng m - 49,350 Tdn , tdc dp xdiv, =0,5-0,7v/s[2l Kiem tra cac gia tri tinh toan nang sudt cua may xdi: Sau xac dinh dugc nang suat sii dyng cua may xdi theo cdng thiic (15) ta tien hanh kidm tra gia tri tinh toan cua nd va thyc hien viec so sanh cac ket qua tinh toan vdi cac sd lieu thuc nghiem ngoai san xuat Nang suat ky thuat tinh toan theo cdng thiic( 15) vdi k =1 va cac sd lieu sau: k^ = 1,5; V|^ =0,7 m/s; b^= 0,1 m, h^- 0,7 m; k^^^ = 1,1; k^^ 1,3; kpj^^ ^ ; n^ ^ l.Cac thii nghiem hen hanh vdi loai dat cd dp ciing khac (lyc can xdi rieng): k^^ = 300.000 N/m^; 500.000 N/m^ va 700.000 N/m^ K6t qua tinh toan dugc dua vao bang Bang So sanh nang suat tinh toan vdi nang suat thyc nghiem Nang suat thirc nghiem T.T Loai dat Tri s6 tinh toin Cong suat dong ca cua may keo N(KW) Khoi lugng may m(kg) Nang suat thuc nghiem Q (m'/h) NSng suat tinh toan Q( m'/h) Sai so % 300000 242000 52600 150-160 134 14 500000 242000 52600 150-160 132 15 700000 242000 52600 109-146 129 300000 300000 49350 187-212 171 14 500000 300000 49350 150-160 168 700000 300000 49350 109-146 163 22 Tir bang so sanh sd lieu ta nhan thay rang nang suat ky thuat tinh toan phu hgp vdi gia tri nang suat xac dinh qua trinh thyc nghiem san xuat Sai sd khdng vugt qua 15% thi nghiem ddu Sai sd tinh toan d day nhan dugc so sanh nang suat tinh toan vdi gia tri trung binh cua nang suat thyc nghiem Rieng d thi nghiem cudi cung thi sai sd den 22% Vdi cimg mpt loai may xdi thi cdng cimg mdt chieu sau xdi nhung vdi nhung loai ddt cd dp Cling khac thi nang sudt ciing khac Dat eang ciing thi nang sudt cang giam va nguge lai m KET L U ^ N Bang su nghien cim ky chu ky lam viec ciia may xdi cdng nghiep ket hgp vdi phuong phap giai tich, tac gia da dua dugc cdng thiic xac dinh nang suat sii dyng ciia may xdi dat dudi dang ham sd ciia cac thdng sd ky thuat sii dyng va dieu kien lam viec cua may xdi Nhu vay cdng thirc Iy thuyet (15) phan anh tinh chdt diSn tien ciia qua hinh xdi dat Cdng thiic da gan ket dugc cac thdng sd ky thuat cua may nhu cdng sudt ddng co, khdi lugng may, tdc lam viec, chieu rdng ,chieu dai va chieu sau xdi ciing nhu cac thdng sd ve dieu kien dat dai nhu k^ ^k^^ Nd cd the dugc sir dyng thyc hien tinh toan xac dinh hieu qua cac may xdi va tdi uu hda chiing Tgp Chi Khoa Hpe Gido Due Ky Thugt (32/2015) Trudng Bgi Hpc Su Phgm Ky Thugt TP Hd ChiMinh TAI LIEU THAM KHAO - BajioBHCB B.M AdpaMOB C B ^opoHCHO- cxpoHTejibHbie MamHHfai H KOMnjicKCbi H3A MocKsa -OMCK, 2001 - 3axapHHK B.3 TejiymKHH B ]\ IUJIOHAO T.A Byjibflosepbi H pbixjiHxejiH HSfl.MamHHOCTpoeHHe, 1987 - BajiOBHea B.H OueuKa 34)(|)eKTHBH0CTH ,aopo»cHbix KOMMyHantHbix MamHH no TCXRHKO3KcnnyaTauH0HHbiM noKa3aTeitaM.M-2002 4- AjicKceeea T.B ApreMbCB K.A MamHHOCTpoeHHe, 1972 Bpoiwdepr A.A /Iopo»CHbie MamHHH HSfl 5- BojiKOB ^ n KpHEcyn B JI MamHHbi /yia scMJiflHtix padoT M 1992 6- BerpOB lO.A KapxoB A.A KoH;ipa A.C Mamnnbi zuifl scMJiAHbix paSor Bniiia mKOJia, 1981 7- SejienCKHii B.C.IHedjiMKHH E.n 3apy6eaaibie naBecHbie TpaicropHbie pbixjiHTenn ManoiS MOUiHOCTH CTpOHTCJIHbie H AopoatHHC MamHHbi M 2, 1965 8- KnpHJiJioB r.B MamHHM jifls semnHHbix padox MamHHocxpoeHHe 1987 9- PacxeraCB M.K PaspadoxKa Mepsubix rpyHXOB B ccBepHOM cxpoHxejibcxBC HayKa, 1992 10- XonoAOB A.M.HHHKC B.B.HasapoB JI.B 3eMJiepoHHO -TpaHcnopxHbie MamuHH, Biima mKOJia, 1982 11- Illapy A.3 ManiHHbi JJJIH cxpoHTenbCTsa n coflepacanHfl aopor H aapo^pOMOB MamHHocxpoeHHe, 1985 12- 3axapHyK B.3 TenymKHH B./J IUJIOHAO r.A.^pKHH A.A MamHHti JJJIH seMJiauMX pa6ox MamHHOCTpoeHHe 1987