THVCTlfNGlAUnUC''''Sv NHONG KHO KHAN TRONG GIAO DUC CON CUA CHA ME HOC SINH TRUNG HOC PHO THONG d THANH PHO HO CHi MINH 1 €> l t vande Gi lo due gia d inh cd vai t rd r l t quan trpng trong su phdt t r i[.]
THVCTlfNGlAUnUC'Sv NHONG KHO KHAN TRONG GIAO DUC CON CUA CHA ME HOC SINH TRUNG HOC PHO THONG d THANH PHO HO CHi MINH TS.NGUY£NANHHJiNG TniAng Dgi hgc Khoa hgc Xl hfl vd Nhin vin Dgt hgc Qutfc gia TP Hfl Chl Minh 1.€>ltvande G i l o due gia d i n h cd vai trd r l t quan trpng su phdt t r i l n n h i n cdch cOa hpe sinh (HS), ddc bidt ddi vdi HS t r u n g hpc p h d t h d n g (THPT) Nghidn cdu thUe trgng gido dye cCia gia dinh ddi vdi HS THPT tgi TP.HCM, c h d n g t d i dd t i m h i l u slu v l nhdng khd khdn cua cha me HS t r o n g qud trinh gido dye vd trdn co sd d d d l x u l t d c bidn phdp n h I m n i n g cao c h i t Idpng gido dye gia dinh Bdi v i l t ndy t r i n h bdy k i t qud ddnh g i l eiia 502 eha me HS d t r d d n g THPT t r i n dja bdn TP Hd Chl Minh v l n h d n g khd khdn vide day qua phUdng p h d p d i l u tra b i n g bdng hdi, phdng v i n s l u cd nhdn vd p h d n g v i n nhdm t$p trung NhuTng k h o k h d n t r o n g g l a o due cai cOa cha me HS THPT d TP Hd Chf M i n h Di tim h i l u n h d n g k h d khdn ciia cha me, chOng tdi da ydu d u cha me HS ddnh gid m d t sd khd khdn hp t h u d n g gdp quan tid v l gido due qua mdc dp ( - hodn todn khdng khd khdn, - cd p h l n khd khdn, - khd k h I n ; - r l t khd khdn ) K i t q u i khdo sdt x d If theo trj trung binh {TB) ddpe t h i hidn d bdng K i t qud bdng cho t h l y : cdc khd khan quan hd vd gido due eon ndu ra, cha me HS ddnh gid d mde dp "cd p h l n khd khdn", d d "khdng h i l u suy nghT cOa eon" cd trj TB cao n h l t (TB: 2.33), t i l p d i n td khd khan "con khdng chia sd, tdm sy vdi eha me", "eon hay e l i tai" (TB: 2.25), "con khdng t i n g nghe cha me" (TB: 2.23), cudi eimg td khd khan "khdng ndi c h u y i n ddpe vdi con" (TB: 2.07) v l "khdng cd thdi gian ddnh cho eon" Vdi dp tdch c h u I n (DLC) khd eao cho t h l y : y k i l n ddnh gid eiia eha me HS v l nhdng khd k h I n t r i n cd sy khdc biet eao, khdng thdng n h l t Khi so s i n h nhdng khd khdn cua cha me cdc nhdm gidi tinh cua con, bdng eho thay: trj TB chl mdc dp khd khan eha me gap p h l l vide glao dye nam vd n d HS khdng cd su khac biet n h i l u vd hau h i t d mde dp "cd p h l n khd khan" Trj sd TB chi mdc d& khd khdn eiia cha me vide giao dye n d HS h l u h i t deu cao hon so vdi HS nam (trd khd k h a n " hay e l l Igi" Bdng 1: MUc dd khd khdn eua cha me viic gido due gia dinh theo gidi ttnh eua eon Nam TT Chung Nir Kh6 k h i n cOa cha me TB OLC TB DLC TB DLC 0.91 Khdng hi^u suy nghT cOa 2.29 0.90 2.36 0.92 2.33 Khdng ndi chuyf n dadc vdi 2.02 1.00 2.11 1.02 2.07 1.01 Khdng cd thdi gian dSnii cho 1.95 0.99 2.13 0.98 2.05 0.99 Con l(hdng Idng nghe cha m^ 2.17 1.07 2.28 1.14 2.23 1.11 Con l 2.23 (nOf)) NhU vSy, tlieo a^nh g i i cCia ciia me nCr HS gSp mure dd khd kilSn vi&c "khdng iii^u suy nghT cGa con" "khdng ndi chuyen vdi con" "con klidng iSng nglie cha m?" "con khdng chia si, tSm si; vdi ciia m?" vS "ciia me khdng thdng nhlt vi$c giio dye con" tf^u cao hdn so vdi dinh g i i cQa cha m^ nam HS Ki^m dinh T-test vdi p = 0.038< 0.05 cho ph^p kit luin: cd si; khic bi^t cd y nghTa v4 TB giCra cha m? nOf v i nam HS dinh gii vi khd khin vi^c khdng cd thdi gian d^nh cho con, d cha m? cOa nii HS cd miirc dO khd khin cao hdn (TB 2.13 (nCf)vi 1.95 (nam) Trong dd, ddi vdl hoc Wp 11, cha m? lai dinh g i i nhOrng khd khin vl "con khdng ling nghe ldi cha me", "con hay cai lai" (TB: 2.28) vS "con khdng chia sS, t i m sir vdi cha me"(TB: 2.27) cao hdn c i Trong nhCrng gia dinh Song hgc Wp 12 thi "khdng hiiu suy nghT cCia con" (TS: 2.49), 'con khdng chia si, t i m sU vdi cha me" (TB: 2.36), 'con khdng ling nghe cha me" (TB: 2.33) l i nhOng khd khin duoc cha me dinh gii vdi trj cao nhit - Nhang khd khin cha me gip phii qui trlnh giio due con: "khdng ndi chuySn dUi?c vdl con", "con khdng ling nghe cha me", "con khdng chia si, t i m si; vdi cha me" v i "v(( chfing mecha frong cdc nhdm iih6i idp cua Bdng 2: MCfc d0 t