1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Giáo trình phương pháp xã hội học tập 2

89 3 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 89
Dung lượng 9,58 MB

Nội dung

Trang 1

\) THƯ VIỆN DT18-XHH

GIAO „ s eee

1994 HOC VIEN CHINH TR] QUOC GIA HO CHT MINH

PHÂN VIỆN BÁO CHÍ VÀ TUYẾN TRUYỀN

KHOA XÃ HỘI HỌC 80100750

Giáo trình phương HẢ NỘI a ee ƒ 4

Trang 2

r Oo 4 UR? MUC LUC

Các tính toán thống kê trong cách lập mẫu ngẫu nhiên

Chương IV: Các phương pháp đo lường

Đo lường bằng các thang đo sơ đẳng Do lường bằng các thanh so sánh

Đo lường bằng các thang phi so sánh

Trang 3

ex

II CAC TINH TOAN THONG KE TRONG CACH LAP MAU NGAU NHIEN Ở day, trong tam là các tính toán định lượng trong cách lấy mẫu ngẫu nhiên nói chung, xác định kích thước của mẫu trong cách lấy mẫu

ngẫu nhiên đơn giản nói riêng

Hai cách tiếp cận trong việc xác định kích thước là cách tiếp cận dựa vào khoảng tin cậy và cách tiếp cận dựa vào sự trắc nghiệm giả thiết

Sự phán quyết thống kê về kích thước mẫu được dựa trên các tri thức về phân bố chuẩn và cách sử dụng các biểu bảng xác suất của nó

Trước khi đi vào chi tiết, chúng ta cần thống nhất đối với một số khái niệm và ký hiệu:

Các khái niệm:

Thông số gốc - đó là đại lượng đặc trưng cho một thuộc tính hoặc

một khía cạnh đo lường của tập hợp gốc

Chỉ số thống kê - đó là đại lượng đặc trưng cho một thuộc tính hoặc một khía cạnh đo lường của tập hợp mẫu Các chỉ số thống kê được sử dụng để ước lượng các thông số của tập hợp gốc

Độ chính xác: Khi đánh giá các thông số của tập hợp gốc bằng các chỉ số thống kê của mẫu cần phải xác định một khoảng nhất định mà trị số

thống kê của mẫu có thể bị chệch so với trị số thật của thông số trong tập hợp gốc Kích thước của khoảng đó gọi là độ chính xác

Khoảng tin cậy: Đó là các khoảng mà trị số thực của thông số trong tập hợp gốc sẽ rơi vào tương ứng với một cấp độ tin cậy nhất định

Độ tin cậy: Đó là xác suất của việc khoảng tin cậy sẽ chứa đựng thông số của tập hợp gốc

Các ký hiệu:

ụ - Giá trị trung bình của các biến số liên tục trong tập hợp gốc 7 - Tỷ lệ của biến số nhị phân trong tập hợp gốc

Trang 4

öx - Sai số chuẩn của giá trị trung bình 6, - Sai số chuẩn của giá trị tỷ lệ

N - Kích thước của tập hợp gốc

X - Giá trị trung bình của biến số liên tục của mẫu

P - Tỷ lệ của biến số nhị phân trong tập hợp mẫu S’ - Phương sai của mẫu

Š - Độ lệch tiêu chuẩn của mẫu n - Kích thước mẫu Z - Biến sai chuẩn hóa D - Độ chính xác C- Hệ số biến thiên (C=Š) ụ H0 - Giả thiết không

HI - Giả thiết đối lập

œ - Xác suất của dạng sai số thứ nhất B - Xác suất của dạng sai số thứ hai

1 Phân bố chuẩn

Phân bố chuẩn được sử dụng để tính toán kích thước mẫu và làm

căn cứ cho các kết luận thống kê truyền thống

Phân bố chuẩn có một số các thuộc tính lý thuyết quan trọng Nó có hình quả chuông cân đối Các đặc trưng đo lường trung tâm của nó (giá trị trung bình, trung vị, mốt) trùng với nhau

Phân bố chuẩn được xác định bởi giá trị trung bình của tập hợp gốc H và độ lệch chuẩn của tập hợp gốc ồ Mọi biến số ngẫu nhiên bình thường X có thể chuyển hóa thành biến số ngẫu nhiên chuẩn Z bởi công thức:

Các bảng xác suất chuẩn, nhìn chung, được sử dụng cho hai mục đích:

Trang 5

- Tìm giá trị X và Z tương ứng với các xác suất đã được biết trước

1.1 Tìm các xác suất tương ứng với các giá trị X và Z nhất định Hình 1 Thang X ôâ we ôâ â we wo c N = ơ N nm = = 35 40 45 50 55 60 65 3 -2 -1 0 +1 +2 +3 »Thang Z Ving gitfa uw va w+ 16 = 0,3413 Ving giifa pp va pp + 26 = 0,4772 Vùng giữa u và h + 36 = 0,4986

Giả định rằng hình 1 trình bày phân bố của số hợp đồng mua hàng

mà một hãng kinh doanh nhận được từng năm Số liệu của tất cả các năm

trong lịch sử hoạt động của hãng đều có trên hình vẽ là biểu đồ của tập hợp gốc Và do đó, tổng thể của tất cả các xác suất hoặc tần xuất trong vùng diện tích dưới đường cong là 1 Giám đốc của hãng kinh doanh muốn xác định xác suất của số hợp đồng trong khoảng từ 50 đến 55 của năm sau Vậy làm thế nào để tính nó Để trả lời câu hỏi này cần phải sử dụng bảng 2 của

các bảng thống kê trong phụ lục |

Bảng 2* cho biết xác suất của vùng diện tích nằm dưới đường cong phân bố chuẩn bắt đầu từ giá trị trung bình (bằng không) đến giá trị Z Chỉ

những giá trị dương của Z được đưa vào trong bảng đối với các phân bố

cân đối có giá trị trung bình bằng 0, vùng diện tích từ giá trị trung bình đến +Z được coi như đồng nhất với vùng diện tích từ giá trị trung bình đến -Z

Giả định rằng sự khác biệt giữa 50 và 55 tương ứng với giá trị Z là 1 Để tính xác suất hoặc nói cách khác vùng diện tích phía dưới đường cong từ giá trị trung bình = 0 đến giá trị Z = +l chúng ta làm như sau: chiếu theo

cột Z từ trên xuống dưới khi nào bắt gặp hàng đơn vị và hàng thập phân

Trang 6

chuyển sang dõi theo hàng ngang cho đến khi gặp cột có hàng bách phân trùng với hàng bách phân của giá trị Z (0,00) Dãy số nằm trong điểm giao

nhau của hàng Z = 1,0 và cột Z = 0,00 chính là xác suất phải tìm Xác suất

đó là 0,3413 Như được trình bày trên hình vẽ 1, xác suất của sự kiện trong năm tới hãng kinh doanh nhận được số hợp đồng trong khoảng từ 50 đến 55 cái sẽ là 0,3413 Cũng theo hình vẽ đó có thể nói rằng xác suất của sự kiện

trong năm tới hãng nhận được lượng hợp đồng từ 45 đến 55 cái sẽ là 0,6826

1.2 Tìm các giá trị X, Z tương ứng với các xác suất cho trước

Giả thiết rằng giám đốc của hãng kinh doanh nói trên muốn xác định cần có bao nhiêu hợp đồng đã được ký kết để có thể nói rằng xác suất của việc số lượng hợp đồng của cả năm dừng ở mức số lượng các hợp đồng _ đã được ký kết ấy chỉ là 5%

Theo giả thiết nói trên thì xác suất của việc số hợp đồng thực của cả năm sẽ lớn hơn số hợp đồng đã được ký nói trên sẽ là 95% Con số 95% này được chia thành hai phần: phần số lượng hợp đồng thực nằm trong khoảng lớn hơn giá trị trung bình (khoảng này là 50%) và phần số lượng hợp đồng

thực nằm trong khoảng giữa giá trị trung bình và giá trị Z mang muốn (khoảng này là 45%) (xem hình vẽ 2) Giá trị Z này có thể được xác định nhờ bảng 2* ở phụ lục Vùng diện tích dưới đường cong từ giá trị trung bình

chuẩn (bằng 0) đến giá trị Z đó như đã nói ở trên là bằng 0,4500 Tìm trong bảng 2, chỗ nào ghi 0,4500 thì dừng lại Trong bảng 2 chỉ có những giá trị

gan sát với 0,4500 đó là 2 trị số 0,4495 và 0,4505 Tương ứng với trị số

0,4495 đối chiếu theo hàng ngang và dột dọc chúng ta tìm được trị số Z 1a

1,64 Vì giá trị Z này thấp hơn giá trị trung bình (0) nên nó là số âm (-1,64)

Tương tự như vậy, tương ứng với trị số 0,4505 chúng ta tìm được Z là -1,65

Trị số 0,4500 nằm giữa trị số 0,4495 và 0,4505 nên cũng có giá trị Z nằm giữa -1,64 và -1,65 có nghĩa là bằng -1,645

Như vậy giá trị X tương ứng (số lượng hợp đồng đã được ký kết cần phải có theo yêu cầu của giám đốc) có thể được tính nhờ công thức sau:

X =kh+/Z3

Trang 7

Việc tính khoảng tin cậy cũng không phức tạp Giả thiết rằng giấm đốc của hãng kinh doanh nói trên muốn xác định một khoảng tin cậy mà với xác suất 95% có thể khẳng định rằng nó sẽ bao quát số lượng hợp đồng được ký kết của hãng trong năm tới Theo hình 3 chúng ta thấy rằng giá trị Z 6 day 1a + 1,96 va giá trị X tương ứng sẽ là 50 + (1,96) 5 Nói cách khác

khoảng tin cậy là khoảng từ 40,2 đến 59,8 hợp đồng

Hình 2: Tìm các giá trị tương ứng với các xác suất cho trước Vùng có diện tích Vùng có diện tích 0,4500 0,5000 EES, | Thang X * 0 , Thang Z Vùng có diện tích 0,4700 Vùng có diện tích 0,4700 Vùng có diện tích Vùng có diện tích 0,0250 0,0250 —zxZ Thang X x 50 Thang Z -⁄, 0 2 Phân bố mẫu

Phân bố mấu là phân bố của các giá trị thống kê của các mẫu có thể được rút ra từ tập hợp gốc theo một kế hoạch lấy mẫu cụ thể Giả thiết rằng cần phải lập một mẫu bao gồm 5 xí nghiệp từ một tập hợp gốc là 20 xí

nghiệp theo cách lập mẫu ngẫu nhiên đơn giản Chúng ta có thể rút ra:

(20 x 19x18x17x16) dx2x3x4x5)

lại khác nhau về mặt tổ hợp Sự phân bố tần xuất tương đối của các giá trị

Trang 8

trung bình của 15.504 mẫu khác nhau này được gọi là phân bố của giá trị

trung bình của mẫu

Nhiệm vụ rất quan trọng của mọi nghiên cứu xã hội học là tính toán

các chỉ số thống kê như giá trị trung bình hoặc giá trị tỷ lệ của mẫu và

thông qua các giá trị đó mà đưa ra các phán đoán về các giá trị tương ứng của tập hợp gốc Sự rút ra từ các kết quả trên mẫu các kết quả trên tập hợp

gốc được coi như là các kết luận thống kê Về mặt lý thuyết, để đánh tham số của tập hợp gốc trên cơ sở chỉ số thống kê của mẫu, mọi mẫu có thể có phải được lập và phải được kiểm định Song trên thực tế chỉ có một mẫu

được lập và trên cơ sở của mẫu đó chúng ta cũng có thể hình dung ra phân

bố của giá trị trung bình hoặc giá trị tỷ lệ của mẫu bằng cách dựa vào lý thuyết xác suất

Những tính chất quan trọng trong phân bố của giá trị trung bình hoặc giá trị tỷ lệ của mẫu đối với những mẫu lớn (có n từ 30 trở lên) là:

- Phân bố của giá trị trung bình của mẫu là phân bố chuẩn Phân bố

của giá trị tỷ lệ của mẫu khi mẫu có kích thước lớn (n từ 30 trở lên) cũng có

thể được xem như là một phần bổ chuẩn

- Giá trị trung bình của phân bố giá trị trung bình của mẫu

` n ` * “

[x = [xi] jf hoặc của giá trị tỷ lệ (P) bằng giá trị tham số tương ứng | i=l

của tập hợp gốc H hoặc r

- Độ lệch chuẩn hay còn gọi là sai số chuẩn của giá trị trung bình

Trang 9

- Thường thường độ lệch chuẩn của tập hợp gốc (8) là không biết

được.Trong những trường hợp như vậy nó có thể được xét đoán qua mẫu nhờ sử dụng công thức sau: Trong trường hợp khi ồ được ước lượng bởi S, sai số chuẩn của giá trị trung bình là: x - Sai số chuẩn của giá trị tỷ lệ có thể được ước lượng bởi giá trị tỷ lệ S = pq-p) > Vo oon

- Vùng diện tích giữa bất kỳ hai điểm phía dưới đường cong của phân bố mẫu có thể được tính toán dựa vào các giá trị Z Giá trị Z cho mỗi P của mẫu: điểm là số lượng sai số chuẩn mà điểm đó cách giá trị trung bình Công thức để tính giá trị Z la: z=^—È 8,

- Khi kích thước của mẫu chiếm từ 10% kích thước của tập hợp gốc trở lên thì các biểu thức của sai số chuẩn sẽ dẫn đến sự ước lượng thái quá

đối với độ lệch chuẩn của giá trị trung bình hoặc giá trị tỷ lệ của tập hợp

Trang 10

3 Cách tiếp cận khoảng tỉn cậy trong xác định kích thước mẫu Cách tiếp cận này dựa trên cơ cấu của các khoảng tin cậy xung quanh giá trị trung bình hoặc giá trị tỷ lệ của mẫu và dựa vào biểu thức của sai số chuẩn Ví dụ, giả thiết rằng nhà nghiên cứu đã lập được một mẫu

gồm 300 hộ gia đình theo cách lập mẫu ngẫu nhiên đơn giản để ước lượng

sự chi tiêu bình quân hàng tháng của vùng dân cư A Nhà nghiên cứu đã

tính được giá trị chi tiêu trung bình của mỗi hộ trên mẫu là 182.000 đồng

Các nghiên cứu đã có thước đó cho biết độ lệch chuẩn là 55.000đ

Vấn đề ở đây là chúng ta cần tìm ra các khoảng giá trị mà một tỷ lệ

nhất định các giá trị trung bình của mẫu sẽ rơi vào Giả định rằng chúng ta

muốn xác định khoảng giá trị xung quanh giá trị trung bình của tập hợp ốc

mà 95% các giá trị trung bình của các mẫu có kích thước 300 hộ sẽ rơi vào Trị số 95% được phân thành hai phần bằng nhau: một nửa nằm phía sau và một nửa nằm phía trước giá trị trung bình (xem hình 4)

Hình 4:

0,475 0,475

+ + L

X L , xX xX u

Để tính toán khoảng tin cậy cần xác định khoảng sau X, va trudc

X, giá trị trung bình của tập hợp gốc up

Trang 11

Giá trị phía dưới của X là: X, =p+ Z8 Giá trị phía trên của X là: X, =u+Zö,

ụ được ước lượng bằng X Khoảng tin cậy sẽ được tính theo công thức: X+Zõ_-

Bây giờ chúng ta có thể định hình khoảng tin cậy 95% xung quanh

giá trị trung bình 182.000đ của mẫu Đầu tiên chúng ta tính sai số chuẩn

của giá trị trung bình: ồ _ 55.000 ỗ_=-= " An A300 Trong bảng 2 của các bảng thống kê ở phần phụ lục, chúng ta có thể =3.180đ

nhìn thấy rằng 95% trọng tâm của phân bố chuẩn nằm giữa + 1,96Z Khoảng tin cậy 95% là:

X +1,96 5.= 182.000 + 1,96 (3.180) = 182.000 + 6.230

Khoảng tin cậy 95% này nằm từ 175.770 đồng đến 188.230 đồng Xác suất tìm thấy trị số thực của giá trị trung bình trong tập hợp gốc trong khoảng 175.770 đồng đến 188.230 đồng là 95%

3.1 Cách tính kích thước mẫu khi các cứ liệu thu được trên mẫu

được tổng hợp dưới dạng các giá trị trung bình

Cách tiếp cận được dùng để định hình khoảng tin cậy có thể được

ứng dụng vào việc xác định kích thước mẫu Giả thiết rằng nhà nghiên cứu

muốn ước lượng một cách chính xác hơn sự chỉ tiêu bình quân hàng tháng của mỗi hộ gia đình Cụ thể là muốn trị giá chỉ tiêu bình quân thu được trên mẫu chỉ sai lệch so với trị giá trung bình thực sự của tập hợp gốc là + 5.000đ

Vậy thì kích thước của mẫu phải lấy là bao nhiêu? Các công việc sau đây sẽ dẫn đến câu trả lời của chúng ta:

1- Xác định độ chính xác Đó là sự khác biệt tối đa cho phép (D) giữa giá trị trung bình của mẫu và giá trị trung bình của tập hợp gốc Trong ví dụ của chúng ta D = + 5.000

Trang 12

3- Xác định giá trị Z tương ứng với độ tin cậy đã biết nhờ bảng 2 của các bảng thống kê trong phụ lục Đối với độ tin cậy 95%, xác suất của

sự kiện rằng giá trị trung bình của tập hợp gốc sẽ rơi ra ngoài điểm cuối

một phía của khoảng tin cậy là 0,025 (cả hai phía: 0,05) Giá trị Z tương

ứng là 1,96

4- Xác định độ lệch chuẩn của tập hợp gốc Độ lệch chuẩn của tập

hợp gốc có thể được biết thông qua các nguồn thông tin thứ cấp Nếu không tìm được nó qua các nguồn thông tin thứ cấp, thì chúng ta có thể ước lượng

nó bằng cách thiết kế một cuộc nghiên cứu thử Nó cũng có thể được ước

định trên cơ sở phán đoán của nhà nghiên cứu Ví dụ, bán kính của biến số

có phân bố chuẩn có độ đài xấp xỉ bằng cộng 3 hoặc trừ 3 độ lệch chuẩn vì thế để tính độ lệch chuẩn chúng ta có thể dùng khoảng cách từ trị số nhỏ nhất của biến số đến trị số cao nhất của biến số chia cho 6

5- Xác định kích thước của mẫu thông qua công thức tính độ lệch chuẩn của giá trị trung bình Từcôngthức Z=* HP 8, 6 D Suy ra y 6 =— sờ hoặc 6 _D n Z 8°Z’ va n= D? Trong giả thiết trên của chúng ta tính kích thước của mẫu là: n— 55.000” (,96)” 5.000? hoặc lấy gần đúng là 465 hộ gia đình = 464,8

Trong công thức tính kích thước mẫu có thể nói rằng kích thước của

mẫu càng lớn nếu độ lệch chuẩn của tập hợp gốc, độ tin cậy, độ chính xác

Trang 13

6 - Nếu như độ lệch chuẩn & cia tap hợp gốc không được biết và

chúng ta phải ước lượng nó, nó cần phải được ước lượng lại khi mẫu đã

được lập Độ lệch chuẩn S của tập hợp mẫu được sử dụng để ước lượng độ lệch chuẩn ö của tập hợp gốc Khoảng tin cậy được kiểm tra lại cần phải

được tính toán để xác định độ chính xác của các kết quả hiện có

Giả định rằng trị giá 55.000 chỉ là sự ước lượng của mẫu, bởi vì giá trị thực của ö là chưa được biết Mẫu gồm 465 hộ gia đình được lập ra và

các quan sát ở đây cho thấy rằng giá trị chi tiêu bình quân là 180.000, độ lệch chuẩn của mẫu là S = 50.000 Khoảng tin cậy được thanh sát lại ở đây sẽ là: 50.000 v 465 X +Z8 = 180.000 + 1,96 ( = 180.000 + 4.550 hoặc 175.450 < u < 184.550

7- Trong một số trường hợp, độ chính xác chỉ được xem xét một cách tương đối Nói cách khác nó được ước lượng bằng khoảng cộng trừ R

phần trăm của giá trị trung bình: D=Ru _ Trong trường hợp này kích thước của mấu là: ồ'Z? C”77 = D? = R? š C là hệ số biến thiên = — là một trị số được ước lượng ụ

8 - Kích thước N của tập hợp gốc không có ảnh hưởng trực tiếp đến kích thước của mẫu loại trừ trường hợp khi yếu tố hiệu chỉnh hữu hạn đối với tập hợp gốc được áp dụng Trong trường hợp tất cả các thành viên của

tập hợp gốc đồng nhất theo đặc trưng mà nhà nghiên cứu quan tâm thì ngay

như kích thước của mẫu chỉ là 1 cũng đủ để ước lượng một cách tuyệt hảo cho giá trị trung bình của tập hợp gốc, cho dù kích thước của tập hợp gốc ở đây là 5.000, 10.000 hay bao nhiêu chăng nữa Cái trực tiếp tác động đến

Trang 14

mẫu va được tính tốn thơng qua phương sai của tập hợp gốc (6?) hoặc

phương sai của tập hợp mẫu (S?)

3.2 Cách tính kích thước mẫu khi các cứ liệu thu được trên mẫu được tổng hợp dưới dạng các giá trị tỷ lệ

Nếu đặc trưng mà nhà nghiên cứu quan tâm có chỉ số thống kê là con so ty lệ thì cách tiếp cận đối với việc xác định kích thước mẫu cũng

tương tự như trong trường hợp chỉ số thống kê là trị số trung bình Giả thiết rằng, nhà nghiên cứu muốn tìm hiểu tỷ lệ số hộ gia đình có 3 con trở lên Chúng ta cần tiến hành các công việc sau đây:

1 Xác định độ chính xác Giả định rằng độ chính xác mong muốn ở đây

D=Px=+0,05

2 Xác định độ tin cậy - Giả định rằng độ tin cậy ở đây là 95%

3 Xác định giá trị Z tương ứng với độ tín cậy như chúng ta đã biết

Z= 1,96

4 Ước lượng giá trị tỷ lệ x của tập hợp gốc Như đã nói ở trên, giá trị tỷ lệ của tập hợp gốc có thể được biết Qua các nguồn thông tin thứ cấp

Trang 15

6 Nếu kích thước của mẫu được lập ra chiếm 10% kích thước của tập hợp gốc trở lên, chúng ta cần áp dụng sự chỉnh lý hữu hạn tập hợp gốc Khi đó kích thước phải có của tập hợp mẫu được tính theo công thức: nN ",=———— (N+n-1)

n = kích thước của mẫu khi chưa hiệu chỉnh

n, = kích thước của mẫu sau khi áp dụng sự hiệu chỉnh

7 Nếu không ước lượng được r, khoảng tin cậy có thể ngắn hơn hoặc dài hơn khoảng tin cậy mong muốn Giả định rằng sau khi mẫu đã

được lập, tỷ lệ P tính được là 0,55 Khoảng tin cậy khi đó được tái ước

lượng bằng việc sử dụng S, để ước lượng ö, chưa biết Khoảng tin cậy đó là: P + ZS, Ở đây Sp= p-P) n Trong ví dụ của chúng ta: S = [095 0=0,55) _ ooa6 , 355

Khoảng tin cậy là 0,55 + 1,96 (0,0264) = 0,55 + 0,052

Như vậy khoảng tin cậy này rộng hơn khoảng tin cậy đã được xác

định Bởi vì độ lệch chuẩn của mẫu trên cơ sở P = 0,55 lớn hơn độ lệch chuẩn của tập hợp gốc, trên cơ sở 7 = 0,64

8 Nếu khoảng tin cậy rộng hơn này vẫn chưa thỏa mãn yêu cầu của nhà nghiên cứu, kích thước của mẫu có thể được quyết định dựa trên sự biến thiên tối đa có thể có trong tập hợp gốc Điều này nảy ra khi œ (1-) có

trị số cao nhất, có nghĩa là khi z = 0,5 Trong ví dụ của chúng ta khi đó kích

thước của mấu sẽ là:

n= 0,5 (0,5) (1,96)? 5 = 384,16 = 385 (lấy tròn số theo số cao)

Trang 16

9 Đôi khi độ chính xác được ấn định một cách tương đối Nó được ước lượng bằng khoảng + R (R phần trăm của giá trị tỷ lệ trong tập hợp gốc) D=Rr Khi đó kích thước của mẫu sẽ là: Z’ (1-7) n=———_— R?m 4 Cách tiếp cận trách nghiệm giả thiết trong xác định kích thước mẫu

Cách tiếp cận trắc nghiệm giả thiết bao gồm sự hình thành giả thiết số 0 và giả thiết đối lập Ở đây nhà nghiên cứu cần phải công bố xác suất của các nguy cơ sai lầm œ (anpha) và (bêta) Nguy cơ sai lầm œ còn gọi là

nguy cơ sai lầm loại I, nguy cơ này diễn ra khi ta phủ nhận "giả thiết số không (Ho), song thực ra thì nó đúng Nguy cơ B hay còn gọi là nguy cơ loại II, đó là trường hợp chúng ta không phủ nhận" giả thiết số 0" khi nó sai Ta không xác nhận được nguy cơ B bằng một trị số như đối với nguy cơ a Nhưng ta biết rằng nguy cơ này bé khi nguy cơ œ lớn và ngược lại Cho nên trong đa số trường hợp, người ta thường chấp nhận nguy cơ loại I (œ) là 5%

4.1 Xác định kích thước mẫu trong trường hợp các cứ liệu được tổng hợp dưới dạng các giá trị trung bình

Giả thiết rằng giám đốc một hãng kinh doanh muốn áp dụng một

phương pháp cổ động khách hàng tại một khu vực nhất định nào đó Việc ra quyết định áp dụng phương pháp đó phụ thuộc vào sự chi tiêu bình quân hàng tháng của các hộ gia đình trong khu vực đó cho việc mua sắm hàng hóa của hãng kinh doanh nói trên

Giả thiết được đặt ra ở đây là nếu gọi sự chỉ tiêu bình quân đó là

170.000 đồng hàng tháng thì phương pháp cổ động sẽ không được áp dụng Nếu sự chi tiêu đó là 180.000 đồng hàng tháng thì phương pháp cổ động sẽ được áp dụng Các công trình nghiên cứu trước đó cho biết rằng độ lệch

Trang 17

1 Hình thành giả thiết số không (H,) và giả thiết đối lập (H,) Chúng

ta sẽ được trắc nghiệm dưới góc độ các giá trị trung bình của tập hợp gốc

Trong ví dụ của chúng ta:

Hạ: Hạ = 170.000

H,: pt, = 180.000

2 Xác định các xác suất của các nguy co sai lầm œ (dạng ]) và B (dạng II) cho phép Trong ví dụ của chúng ta:

œ= 0,05

B=0,01

Các xác suất này được trình bày bằng đồ thị của hình 5

Hình 5: Dạng sai số œ (dạng I) và B (dang II) 95 tổng điện tích 99 tổng diện tích | uị = 180 < ZB=-2,33 >

3 Xác định giá trị Z tương ứng với mỗi xác suất sai số œ và B Xem bảng 2* của các bảng thống kê trong phần phụ lục Đối với sự trắc nghiệm

một phía đuôi thì Z = 1,64 và Z = -2,33 (hình 5) Trắc nghiệm một phía

đuôi được sử dụng ở đây vì giả thiết đối lập (H,) dẫn đến giá trị trung bình

lớn hơn giá trị trung bình phát sinh từ giả thiết s6 khong (H,) |

Trang 18

4 Xác định độ lệch chuan 6 cua tap hop géc: Trong vi du cia chiing ta 6 = 5.500

5 Xác định giá trị cấn hạn (tới hạn) dựa trên cả hai phân bố Do cả

hai phân bố mẫu kết nối với nhau nên: Giá trị cấnhạn =p,+Z, 5 n Ồ: =H 2B Trên hình vẽ 5 chúng ta thấy rằng giá trị cấn hạn nằm giữa các giá trị trung bình Lụ va Ly 6 Xác định kích thước mẫu từ phương trình cân bằng của hai giá trị cấn hạn nói trên: | (Z,, +Z,)°8? n=———— (Hy — tụ) Trong ví dụ của chúng ta: p= £64 +2,33)°(5.500)? _ 76,71 (180.000—170.000)? Lấy tròn gần đúng là 477 hộ gia đình 7 Xác định giá trị cấn hạn để quyết định nguyên tắc ra quyết định Giá trị cấn hạn: u,+Z, 8 n = 170.000 + 1,64 500) = 170.000 + 413 = 174.130

Như vậy nguyên tắc ra quyết định đòi hỏi mẫu phải có kích thước là

Trang 19

sự chi tiêu bình quân đó vượt quá 174.130 đồng thì hãng kinh doanh có căn cứ để ra quyết định áp dụng phương pháp quảng cáo

4.2 Xác định kích thước mẫu trong trường hợp các cứ liệu được tổng hợp dưới dạng các giá trị tỷ lệ

Thủ tục để xác định kích thước mẫu ở đây cũng giống như ở phần

trên (đối với trường hợp các cứ liệu được tổng hợp dưới dạng các giá trị trung bình) Chúng ta giả thiết rằng việc ra quyết định áp dụng phương pháp

quảng cáo nói trên phụ thuộc vào tỷ lệ số hộ gia đình có chỉ tiêu bình quân hàng tháng từ 250.000 đồng trở lên Nếu như tỷ lệ đó là 0,5 thì phương pháp cổ động đó sẽ không được áp dụng Mặt khác nếu tỷ lệ đó lớn hơn 0,6

phương pháp quảng cáo sẽ được áp dụng Câu hỏi đặt ra là mẫu lập ra theo

cách lấy mẫu ngẫu nhiên đơn giản ở đây cần phải có kích cỡ là bao nhiêu? chúng ta cần phải tiến hành các bước sau đây:

1 Xác định giả thiết số không (H,) và giả thiết đối trọng (h,) Chúng được trắc nghiệm dưới góc độ của các giá trị tỷ lệ trong tập hợp gốc

TM) Va Ty

Trong ví dụ của chúng ta: Hy: 7 =0,5 H,: 7, =0,6

2 Xác định các xác suất sai lắm dạng I (œ), và dạng II (B) cho phép “Trong ví dụ của chúng ta:

œ= 0,05

B=0,05

3 Xác định giá trị Z tương ứng với các xác suất œ và B Xem bảng 2

trong phụ lục Đối với trắc nghiệm một phía đuôi, các giá trị này là:

Za = 1,64 ZB = 1,64

Trang 20

Zœ 4Ìn¿(— mạ)

+ ————————

Vn

= Tụ — Zp ee |

5 Xác định kích thước của mẫu bằng đẳng thức của hai hình thức thể luận của giá trị cấn hạn ta có: ` [Zœ-[x,d-z,)+ZB.Jx,d—==)ƒ (x, ~ Te)” Giá trị cấn hạn = 7, Trong ví dụ của chúng ta: ` |,64./0,5(05) + L64-/06 6⁄2] “264 (0,6 — 0,5)’

Lấy tròn theo số nguyên cao kế cận là 264

6 Tính giá trị cấn hạn để quyết định nguyên tắc ra quyết định: Za /7™,(1—7,) o ®†————T— vn _ 0,5+1,64.,/0,5 0,5 264

Nguyên tắc ra quyết định đòi hỏi phải lập một mẫu có kích thước

264 hộ gia đình Nếu tỷ lệ số hộ gia đình trên mẫu có chỉ tiêu bình quân

hàng tháng 250.000 đồng hoặc hơi thấp hơn hoặc bằng 0,55, phương pháp quảng cáo sẽ không được áp dụng Nếu tỷ lệ đó vượt quá 0,55 thì phương

Giá trị cấnhạn = 7

=0,55

pháp quảng cáo được áp dụng

4.3 Việc xác định kích thước mẫu trong các cách lấy mẫu xác suất khác

Việc xác định kích thước mẫu trong các phương pháp lấy mẫu ngẫu nhiên (xác suất) khác được dựa trên một số nguyên tắc cơ bản Nhà nghiên

Trang 21

Trong cách lấy mẫu ngẫu nhiên đơn giản vấn đề chi phí ngân sách không có ảnh hưởng trực tiếp đến sự tính toán kích thước của mẫu Song

trong trường hợp với cách lấy mẫu phân tầng hay phân cụm nhà nghiên cứu

cần phải có sự tính toán sơ bộ đến cái giá tài chính phải trả ở đây Nhà nghiên cứu phải tính toán đến độ biến thiên bên trong mỗi tầng hoặc độ biến thiên bên trong và giữa các cụm Khi một kích thước tới hạn được quyết định, mẫu được phân bố theo các tầng hoặc các cụm Điều đó làm tăng tính phức tạp của các công thức có liên quan đến việc tính toán kích thước mẫu Điều này đòi hỏi phải có một trình độ hiểu biết rất cao về lý

luận lấy mẫu Ở đây chúng tôi chỉ nêu ra một nguyên tắc có tính khả thi

trong điều kiện thực tế của chúng ta hiện nay là: kích thước mẫu theo cách

Trang 22

Chuong IV

CÁC PHƯƠNG PHÁP ĐO LƯỜNG

Đo lường là quá trình chuyển đổi các đặc tính của đối tượng thành các con số hoặc các diễn tả theo những nguyên tắc nhất định Công cụ để

đo lường các đối tượng xã hội học được gọi là các thang đo Thang đo là đải trị số, trên đó đối tượng nghiên cứu của chúng ta được định vị Trong phần này chúng ta sẽ xem xét các phương pháp đo lường bằng các thang đo sơ

đẳng (thang định danh, thang thứ tự, thang khoảng và thang tỷ lệ) cũng như

các phương pháp đo lường thông qua các biến thái khác nhau của các thang đo sơ đẳng đó

IL DO LUGNG BANG CAC THANG DO SO DANG

1 Đo lường bang thang định danh: Thang định danh là một giải

số liệu, các con số ở đây chỉ có vai trò như là những cái mác, những cái nhãn hiệu giúp cho việc nhận biết và phân loại các đối tượng Khi thang

định danh được sử dụng cho mục đích nhận dạng, mối quan hệ giữa các con

số và các đối tượng là mối quan hệ hết sức khắt khe: mỗi con số chỉ có thể

là nhãn hiệu của một đối tượng Trong thực tế, thang định danh được sử dụng rất phổ biến Ví dụ: các số hiệu của các cầu thủ trong một đội bóng là một thang định danh

Khi thang định danh được dùng cho mục đích phân nhóm, các con SỐ có vai trò như là các nhãn hiệu, các tên gọi của các nhóm hoặc các phạm trù Các nhóm hoặc các phạm trù có tính loại trừ lẫn nhau Các đối tượng

trong một nhóm hoặc trong một phạm trù đồng đẳng với nhau dưới góc độ thuộc tính đặc trưng mà số hiệu định danh của nhóm đó tượng trưng Tất cả

các đối tượng nằm trong cùng một nhóm đều có cùng một số hiệu Hai

nhóm khác nhau không thể có chung một số hiệu

Các con số trong thang định danh không phản ánh hàm lượng thuộc

Trang 23

2 Do lường bằng thang thứ tự: Thang thứ tự là loại thang phân

hạng Các con số trong thang thứ tự có vai trò như các chỉ số định lượng tương đối đối với thuộc tinh ma ching ta quan tâm trong các đối tượng Thang thứ tự cho phép chúng ta nói rằng đối tượng này có hàm lượng đặc trưng mà chúng ta quan tâm lớn hơn hay ít hơn hàm lượng đặc trưng tương ứng mà đối tượng kia chứa đựng Thang thứ tự cho chúng ta biết cách khác nhau giữa các đối tượng đối tượng được xếp thứ nhất có hàm

lượng đặc trưng mà chúng ta quan tâm lớn hơn hàm lượng đặc trưng ấy ở đối tượng thứ hai Song đối tượng xếp thứ hai có hàm lượng ít hơn hàm

lượng ở các đối tượng thứ nhất là bao nhiêu thì trong thứ tự không chỉ ra được Sự phân loại chất lượng kiểu "tốt hơn", "kém hơn", sự phân nhóm kinh tế xã hội theo kiểu mức sống "cao hơn", "thấp hơn" là các ví dụ về

kiểu thang đo này

Trong thang đo thứ tự, các đối tượng như nhau có cùng một thứ bậc Mọi dãy số có thể được xem xét như hiện thân của mối quan hệ thứ bậc giữa các đối tượng

3 Đo lường bằng thang khoảng: Thang khoảng là loại thang do trong đó các con số được sử dụng để phân cấp các loại đối tượng theo nguyên tắc các khoảng bằng nhau về mặt hàm lượng của đặc trưng mà chúng ta đo lường Thang khoảng có tất cả các khả năng của thang thứ

tự, ngoài ra nó còn cho phép chúng ta xác định khoảng khác nhau giữa

các đối tượng Trong thang khoảng vị trí của điểm zerô (điểm 0) không

có tính cố định Việc ấn định điểm zerô cũng như các đơn vị đo lường _ hoàn foàn tùy tiện Tất cả các biến thái dương tính của hàm số tuyến tính

y = ax + b đều có thể có tư cách là một thang khoảng Mỗi thang khoảng

có thể được kéo dài hoặc rút ngắn tùy ý Ví dụ nếu thang có độ chia từ 0

đến 100 thì nhân tất cả các số với 1/100 ta sẽ có một thang khoảng mới với giá trị từ 0 đến 1

Trang 24

cũng như so sánh các khoảng hoặc các khác biệt Trong thang tỷ lệ, tỷ lệ giữa các trị số chứa đựng các ý nghĩa xác định Chiều cao, trọng lượng, lứa

tuổi là các ví dụ về thang tỷ lệ | Trong thang tỷ lệ, điểm zerô (điểm 0) được cố định

Các phương pháp đo lường có thể được phân thành hai loại: đo lường bằng các thang đo so sánh và đo lường bằng các thang không so sánh

Il DO LUONG BANG CAC THANG SO SANH

Thang so sánh là thang có các trị số thể hiện sự so sánh trực tiếp các đối tượng Các cứ liệu thu được qua đo lường bằng thang so sánh cần phải

được lý giải như những cứ liệu tương đối Các cứ liệu đó có các thuộc tính

của nguyên tắc thứ tự hoặc loại hạng Các thang so sánh được sử dụng phổ biến là: thang so sánh theo từng cặp, thang thứ bậc, thang có tổng các trị số

không đổi, thang phân loại nhanh

1 Thang so sánh theo từng cặp- trong các đo lường bằng thang

này, cá nhân mà chúng ta nghiên cứu có nhiệm vụ so sánh hai khách thể theo một cơ sở nhất định Các cứ liệu thu được ở đây mang bản chất thứ tự

Bảng dưới đây trình bày kết quả so sánh 10 cặp hãng kinh doanh của Nhật Bản Biểu 6: Sony |Panasonic| Hitachi Suzuki | Kawasaki Sony 0 0 1 Panasonic 1* 0 1 0 Hitachi 1 1 1 1 Suzuki 0 0 Số lần được ưa 3 2 0 4 1 chuộng **

* Số 1 trong ô vuông có nghĩa hàng hóa của hãng kinh doanh nằm ở cột đứng được ưa chuộng hơn hàng hóa của hãng kinh doanh tương ứng

nằm ở cột ngang Số 0 có nghĩa là ngược lại

Trang 25

Người được hỏi có nhiệm vụ cho biết trong mỗi cặp được dua ra, anh ta thích dùng hàng hóa của hãng nào hơn Số cặp là bao nhiêu là do số hãng quyết định

Ví dụ nếu số hãng được đưa ra so sánh là n thì số cặp sẽ là:

n(n-l)

2

Các cứ liệu thu được bằng phương pháp so sánh theo từng cặp có thể được phân tích theo nhiều cách Ví dụ chúng ta có thể tính tỷ lệ phần trăm

những người ưa chuộng hàng hóa của hãng này so với hãng kia bằng cách

lập bảng trên đây chung cho tất cả các thành viên trong mẫu nghiên cứu, chia các tổng của mỗi cột cho tổng số người trả lời (kích thước mẫu) và nhân kết quả đó với 100 Ở đây sự đánh giá cùng một lúc tất cả các hãng cũng có thể thực hiện được Trên cơ sở công nhận tính chuyển tiếp, các cứ liệu so sánh theo từng cặp có thể quy chuyển thành một hệ thống thứ bậc

Nguyên lý chuyển tiếp sở thích biểu hiện ở chỗ nếu người ta thích hàng hóa của hãng A hơn hàng hóa của hãng B và thích hàng hóa của hãng B hơn hãng C thì cũng có nghĩa là thích hàng hóa của hãng A hơn hàng hóa của hãng C

Thang so sánh theo từng cặp thường chỉ được sử dụng trong trường hợp các khách thể (các đối tượng được đưa ra để so sánh với nhau) có số

lượng hạn chế bởi vì nó đòi hỏi sự so sánh trực tiếp và nêu số lượng các khách thể lớn hơn số lượng các cặp phải so sánh sẽ quá tải đối với người

được thẩm vấn Ngoài ra nguyên lý chuyển tiếp có thể bị vi phạm và kết quả

thu được sẽ bị méo mó 2 Thang thứ bậc

Đó là dạng thang so sánh có nội dung là: các thành viên trong mẫu nghiên cứu được tiếp xúc cùng một lúc với một số khách thể và có nhiệm vụ xếp thứ tự hoặc cấp độ của các khách thể đó theo một cơ sở nhất định

nào đó

Ví dụ: chúng ta có thể đề nghị họ xếp hạng các hãng xà phòng theo

Trang 26

Trong bảng dưới đây, hãng mà người được hỏi yêu thích nhất được xếp thứ nhất, số 2 là hãng được yêu thích thứ hai và cứ như thế cho tới số n là số tương ứng với hãng được ưa chuộng sau cùng

Biểu 7: Thái độ sùng bái các hãng xe máy

được đo lường theo thang thứ bậc

Ông (bà, anh, chị)

Hãy xếp thứ tự các hãng xe máy dưới đây theo mức độ ưa thích của mình

Đánh số 1 vào hằng thứ tự của hãng mà ông (bà, anh, chị) ưa thích nhất, số 2 vào hàng thứ tự của hãng được ưa thích thứ 2

Tên hãng Thứ tự mà ông (bà, anh, chị) xếp Honda Ha

SUZUKI cece cece ceeeeee

Kawasaki Lecce nce nceeeee

Thang thứ bậc được dùng rất phổ biến trong đo lường sở thích của cá nhân cũng như nhóm xã hội Sự đo lường bằng thang thứ bậc đòi hỏi ít thời gian hơn sự đo lường bằng thang so sánh theo từng cặp Tháng thứ bậc

hạn chế được các phương án trả lời vi phạm tính chuyển tiếp Với n khách thể, thang thứ bậc chỉ đòi hỏi có (n - 1) quyết định, trong khi đó thang so sánh theo từng cặp yêu cầu phải có:

-1 gs =" = ) quyết định

Ưu điểm khác của thang thứ bậc là sự chỉ dẫn cách làm ở đây đơn giản, đễ hiểu Nhược điểm chủ yếu của thang thứ bậc là các cứ liệu thu được ở đây chỉ là các cứ liệu chứa đựng thông tin thứ tự

3 Thang có tổng các trị số không đổi

Đó là thang so sánh, có tổng các trị số là một hằng số Những người

trong mẫu nghiên cứu có nhiệm vụ phân chia tổng trị số đó cho một nhóm

khách thể theo một tiêu chuẩn nhất định

Bảng dưới đây, những người trong mẫu nghiên cứu được yêu cầu

Trang 27

trọng nhất được chia ít điểm nhất, thuộc tính không quan trọng tương ứng

với điểm 0

Biểu 8: Tâm quan trọng của các đặc điểm của xà phòng "Bông Mai" được đo bằng thang tổng trị số không đổi

Chỉ dẫn:

Dưới đây chúng tôi liệt kê 8 thuộc tính của xà phòng "Bông Mai" Ông (bà, anh, chị) hãy phân chia tổng số điểm là 100cho các thuộc tính ấy Thuộc tính mà ông (bà, anh, chị) cho là quan trọng nhất cần được

chia nhiều điểm nhất, thuộc tính càng ít quan trọng thì càng được chia ít điểm Thuộc tính nào không quan trọng thì cho điểm 0 Nếu thuộc tính này quan trọng gấp đôi thuộc tính kia thì nó có số điểm gấp đôi số điểm

của thuộc tính kia Kết quả trả lời của ba nhóm như sau: Thuộc tính Nhóm 1 Nhóm 2 Nhóm 3 1 Độ mềm 8 2 4 2 Độ kết dính 2 4 17 3 Khả năng sinh bọt 3 9 4 Giá 53 17 5 Mùi thom 0 19 _|6 Hình thức bao bi 5 9 7 Độ ẩm 3 20 8 Sức tẩy sạch 13 60 15 Tổng 100 100 100

Các thuộc tính được định vị bằng cách lấy tổng số điểm mà mỗi

thuộc tính được mọi người chia cho tổng số người tham gia cho điểm Bảng

trên trình bày kết quả thụ được từ ba nhóm Thuộc tính quan trọng nhất đối với nhóm thứ nhất là giá cả, đối với nhóm thứ hai là sức tẩy sạch, đối với nhóm thứ 3 là độ ẩm và mùi thơm |

Ưu điểm chủ yếu của thang tổng trị số không đổi là nó cho phép

phân biệt rạch ròi các khách thể mà không đòi hỏi quá nhiều thời gian

Trang 28

Trong ví dụ trên họ có thể dùng 110 điểm hoặc 90 điểm chứ không phải 100 điểm như chúng ta quy định Nhược điểm thứ hai ở đây là nếu tổng số điểm mà chúng ta quy định ít quá sẽ khó phân chia, nhiều quá sé dé

gây sự nhiễu tạp trong kết quả cho điểm hoặc làm cho những người cho

điểm căng thẳng, mệt mỗi

4 Thang phân hạng nhanh: Thang này được phát triển để phân

biệt nhanh một lượng khách thể tương đối lớn Ở đây theo thủ tục của thang

thứ tự các khách thể được phân loại thành các nhóm trên cơ sở đồng nhất

theo một tiêu chuẩn nhất định Ví dụ, những người tham gia phân loại được

cung cấp 100 tấm thẻ Trên mỗi thẻ ghi một tuyên ngôn về thái độ

Những người phân loại cần phải phân phối chúng thành 11 nhóm bất đầu từ nhóm các tuyên ngôn mà người phân loại cảm thấy hầu như hoàn

toàn tán thành, nhóm cuối cùng là nhóm các tuyên ngôn mà người phân loại

ít đồng ý với chúng nhất Số các khách thể cần có để phân thành các loại nhóm ở đây không nên ít hơn 60 hoặc nhiều hơn 100 Số lượng từ 60 đến 90 là phù hợp nhất

II ĐO LƯỜNG BẰNG CÁC THANG PHI SO SÁNH

Thang phi so sánh - đó là loại thang thông qua nó mỗi khách thể

được đọ đạc một cách độc lập đối với các khách thể khác trong nhóm các khách thể được đo đạc Các thang phi so sánh được phân thành thang đánh giá liên tục và thang đánh giá theo các tiêu chí

1 Thang đánh giá liên tục còn được gọi là thang đánh giá theo biểu đô Ở đây người ta đánh giá các khách thể bằng cách đánh dấu vào vị trí

tương ứng trên một đoạn đường thẳng khởi đầu từ cực này sang cực kia của biến số được đánh giá Ở đây những người tham gia đánh giá không bị giới

hạn bởi các phương án trả lời do nhà nghiên cứu định trước Hình thức của

thang đánh giá liên tục có thể thay đổi Ví dụ trục biểu đồ có thể nằm

ngang hoặc nằm đọc, các điểm trên thang đo có thể là các con số hoặc các hình tượng

Trang 29

Biéu 9:

Ông (bà, anh, chị) đánh giá như thế nào vẻ hiệu quả công việc chống tham những của chính quyền thành phố ta trong năm qua? (đánh dấu trên trục đồ) Dạng thứ nhất: IRất thấp Ă SH HH HH HH ng ng ngư, Rất cao Dạng thứ nhất: Rất thấp 2< 22s SH ST 2111111 xrrrveo Rất cao 0 10 20 30 40 50 60 70 80 90 100 Dạng thứ nhất: Rất thấp Vừa phải Rất cao si Rất cao 0 10 20 30 40 50 60 70 80 90 100

Khi người tham gia đánh giá đã đánh dấu vào trục đồ, nhà nghiên

cứu có thể phân trục đồ thành nhiều phạm trù theo ý mình và ấn định số điểm tương ứng với mỗi phạm trù Các điểm số này thường có đặc tính của các cứ liệu trong thang khoảng Ưu điểm của thang đánh giá liên tục là ở chỗ nó dễ thiết kế Song việc đánh dấu trên trục đồ là một công việc khó và

khơng thực tế Ngồi ra thang đánh giá liên tục không có khả năng đưa lại

cho chúng ta một lượng thông tin mới đáng kể

2 Thang đánh giá theo tiêu chí đó là thang đo có các trị số gắn liền

với các phương án trả lời (phạm trù) nhất định Mỗi phạm trù có một vị trí xác định trên thang đo Những người tham gia đánh giá khách thể có nhiệm

vụ đánh dấu vào phạm trù tương ứng với khách thể Ở đây chúng ta sẽ mô

tả một số hình thức phổ biến của loại thang đo này Đó là thang Likert,

thang vi phân ngữ nghĩa, thang Stapel

Thang Likert Đó là thang đo có 5 phương án (phạm trù) trả lời bắt

Trang 30

Dưới đây, chúng ta sẽ minh họa việc dùng thang Likert bằng ví dụ cụ thể:

Biểu 10: Đề dẫn:

Dưới đây là các ý kiến khác nhau về tình trạng vệ sinh ở thành phố chúng ta Xím ông (bà, anh, chị) cho biết mức độ tán thành hoặc không

tán thành của mình đối với mỗi ý kiến(bằng cách khoanh điểm)

1 = Hồn tồn khơng tán thành | 2 = Về cơ bản không tán thành 3 = Không tán thành cũng không phản đối 4 = Tán thành về cơ bản 5 = Hoàn toàn tán thành Hoàn toàn | Về cơ bản | Không tán | Về cơ oo 4 , on 4 , ` ? 2 Hoan toan Cac y kién không tấn | không tán | thành cũng | bản tán| _ ` + ` tán thành thành thành | không phải | thành 1 Tình trạng vệ sinh ở thành phố ta hiện nay 1 2 3 4 5 Tất tot 2 Tình trạng vệ sinh ở thành phố ta hiện nay 1 2 3 4 a) thuộc diện trung bình 3 Tình trạng vệ sinh ở thành phố ta hiện nay 1 2 3 4 5 Tất tồi

Ưu điểm của thang Likert là nó dễ thiết kế và điều hành Cách trả lời đối với các câu hỏi dùng thang đo Likert dế hiểu Thang này có khả

năng đem lại nhiều hiệu quả trong phỏng vấn theo bưu chính, theo điện

thoải và phỏng vấn cá nhân Nhược điểm chính của thang Likert so với các

thang đánh giá theo tiêu chí khác là nó đòi hỏi nhiều thời gian hơn

Thang vi phân ngữ nghĩa Đó là loại thang đo 7 điểm (7 phương án trả

Trang 31

Biéu 11:

Đề dẫn:

Ông (ba, anh, chị) đánh giá như thế nào về hoạt động của Đoàn

thanh niên trong thời điểm hiện nay (hãy đánh dấu vào bậc thang biểu thị

tương ứng với đánh giá của mình trong thang đo dưới đây):

Có hiệu quả 1 2 3 4 5 6 7 Không có hiệu quả Chủđộng 1 2 3 4 5 6 7 BỊ động Thực tế 1 2 3 4 5 6 7 Thiếu thực tế Sángtạo 1 2 3 4 5 6 7 Giáo điều Hấpdẫn 1 2 3 4 5 6 7 Tẻ nhạt

Các kết quả trả lời cá nhân có thể chuyển thành điểm số theo thang điểm từ 1 đến 7 hoặc từ -3 đến +3 Các kết quả tổng hợp thường được phân tích bằng hình thức phân tích chắt lọc Trong hình thức phân tích chất lọc

các trị số trung bình hoặc trung vị được tính toán và được so sánh bằng các

phân tích thống kê Các kết quả ở đây cho phép xác định khác biệt hoặc đồng nhất của các khách thể

Thang vi phân ngữ nghĩa được dùng phổ biến để so sánh các thái độ phán xét Ở đây giá trị trung bình thường xuyên được sử dụng với tư cách là một chỉ số thống kê tổng hợp nên đang có sự tranh luận xung quanh vấn đề

liệu có thể coi các cứ liệu ở đây là các cứ liệu mang bản chất của các cứ liệu thang khoảng hay không

Thang Stsapel Đólà thang đánh giá có 10 phương án (phạm trù) trả

lời bắt đầu từ -5 đến +5 song không có điểm trung tính (điểm 0) Thang này thường nằm theo chiều thang đứng Các thành viên của mẫu nghiên cứu

được yêu cầu cho biết mỗi thuật ngữ hoặc câu văn được nêu ra có phản ánh chính xác khách thể mà chúng ta quan tâm hay không Sự trả lời của họ cần

phải được cụ thể hóa bằng cách đánh dấu (khoanh tròn) điểm số trên thang

Trang 32

Vi du:

Biéu 12:

Dưới đây là một loạt các ngôn từ nói về hãng Sam sung Ông (bà, anh, chị) hãy cho biết mức độ chính xác của các ngôn từ đó (khoanh tròn trị số phù hợp với đánh giá của ông (bà, anh, chị) Càng chính xác trị số càng lớn +5 là chính xác nhất, -5 là thiếu chính xác nhất) Ngôn từ "chất lượng cao” Ngôn từ "phục vụ tồi" _ +5 +5 +4 +4 +3 +3 +2 +2 +1 +1 -1 -1 2 -2 -3 -3 -4 -4 -5 -5

Các cứ liệu thu được ở đây có thể được phân tích giống như sự phân tích các cứ liệu của thang vi phân ngữ nghĩa

CÁC QUYẾT ĐỊNH CÓ LIÊN QUAN ĐẾN VIỆC THIẾT KẾ

CÁC THANG ĐÁNH GIÁ TIÊU CHÍ PHI SO SÁNH

Như chúng ta đã biết, thang đánh giá tiêu chí phi so sánh có thể mang các hình thức rất khác nhau Dưới đây chúng ta sẽ xem xét 6 quyết định chủ yếu mà nhà nghiên cứu có thể phải cân nhắc trong quá trình thiết kế thang đánh giá phi so sánh

- Quyết định số lượng các phạm trù (số các phương án trả lời)

- Quyết định về việc sử dụng thang cân đối hay không cân đối

- Quyết định về việc nên sử dụng số phạm trù chắn hay lẻ

- Quyết định về việc nên sử dụng thang cưỡng ép hay không cưỡng ép

Trang 33

1 Số lượng các phạm trù của thang đo Các phạm trù (phương án trả lời) càng nhiều thì các khách thể càng được phân biệt rạch ròi với nhau Song, mặt khác, phần lớn mọi người chỉ có khả năng thao tác một số ít các phạm trù Theo các nhà tâm lý học thì số lượng các phạm trù thích hợp với khả năng trị giác của con người là vào khoảng 7 + 2 tức là từ 5 đến 9 phạm trù Dưới đây là một số nguyên tắc cần tính toán trong việc ra quyết định về số lượng các phạm trù

Nếu các cá nhân tham gia đánh giá các khách thể mà chúng ta quan

tâm hào hứng với nhiệm vụ và am hiểu về các khách thể thì chúng ta có thể

sử dụng một số lượng các phạm trù nhiều hơn Trong trường hợp ngược lại thì chỉ nên sử dụng một số lượng ít các phạm trù Hình thức thu thập cứ liệu cũng có ảnh hưởng đến quyết định về số lượng các phạm trù Trong phỏng

vấn theo điện thoại hay phỏng vấn qua bưu chính không nên sử dụng nhiều

phạm trù

Việc ra quyết định về số lượng các phạm trù còn tùy thuộc vào việc

các cứ liệu sẽ được phân tích và sử dụng như thế nào Trong trường hợp các

tiêu chí đo lường riêng lẻ được tổng hợp cùng nhau để tạo ra một chỉ số đơn giản của mỗi cá nhân tham gia đánh giá thì số lượng các phạm trù ở đây chỉ

_5 là đủ Một số lượng các phạm trù như vậy cũng là hợp lý trong trường hợp nhà nghiên cứu muốn có những khái quát rộng, muốn có sự so sánh giữa

các nhóm Kích thước của hệ số tương quan cũng có ảnh hưởng đến quyết

định về số lượng các phạm trù Số lượng các phạm trù càng ít thì hệ số tương quan càng giảm

2 Thang cân đối và thang không cân đối

Thang cân đối là thang có số các phương án (phạm trù) dương tính

(tán thành, khẳng định ) và số các phạm trù âm tính (không tán thành, phủ

định) ngang nhau Trong thang không cân đối thì cá số lượng đó không ngang bằng nhau Nói chung thang đo nên có dạng cân đối Trong trường _ hợp các câu trả lời có thể sử dụng thang không cân đối có số các phạm trù ở

Trang 34

3 Tổng số các phạm trù là một số chắn hay lẻ Trong trường hợp

tổng số các phạm trù là một số lẻ thì phạm trù đứng giữa là phạm trù trung

bình Thang Likert là thang đánh giá cân đối có tổng số các phạm trù là một

số lẻ và có phạm trù đứng giữa là phạm trù trung tính

Việc sử dụng thang đo có tổng các phạm trù là một số chắn hay một số lẻ phụ thuộc vào việc liệu có thể có một số thành viên trong mẫu có thái độ trung tính đối với vấn đề được nêu ra không Nếu điều đó là có thể thì

cần sử dụng thang có tổng số các phạm trù là một số lẻ Trong trường hợp

nhà nghiên cứu muốn cưỡng ép người trả lời không được đưa ra câu trả lời trung tính hoặc có tính mập mờ thì phải sử dụng thang có tổng số các phạm

trù là một số chắn

4 Thang cưỡng ép và thang không cưỡng ép Thang đánh giá

cưỡng ép là loại thang cưỡng ép người trả lời có khuynh hướng trả lời

-_ không biết" hoặc "không có ý kiến" phải đưa ra những câu trả lời khác bằng cách loại trừ khỏi thang đo phương án "không biết" hoặc "không có ý kiến" Thang không cưỡng ép, ngược lại có phạm trù "không biết"

hoặc "không có ý kiến" Nếu theo dự đoán của chúng ta nhiều người có

thể lợi dụng phương án "không biết" hoặc "không có ý kiến" để tránh đưa ra ý kiến đích thực của mình thì nên dùng thang đo cưỡng ép

5 Bản chất và cấp độ của việc mô tả bằng lời Bản chất và cấp độ của sự miêu tả bằng lời gắn với các phạm trù của thang đo có thể được chuyển dịch trong một phạm vi nhất định và điều đó có thể ảnh hưởng đến sự trả lời của các thành viên trong mẫu nghiên cứu Các phạm trù của thang đo có thể được biểu thị bằng lời, bằng số, hoặc bằng biểu đồ Thậm chí, nhà nghiên cứu có thể quyết định phải chăng mọi phạm trù đều cần

phải có một nhãn hiệu hay chỉ một số hoặc hai phạm trù ở hai cực có

nhãn hiệu là đủ Có trường hợp sự mô tả bằng lời đối với mỗi phạm trù

không làm tăng được độ chính xác hoặc độ tin cậy của các cứ liệu Sự mô tả bằng lời gắn với tất cả hoặc một số phạm trù phải sát thực với phương

Trang 35

6 Hinh dang thang do

Thang đo có thể có những hình dạng rất khác nhau Thang đo có thể

trình bày theo tư thế nằm ngang hay nằm dọc Các phạm trù có thể được biểu thị bằng các hình hộp, bằng các đường gián đoạn, các đơn vị trên một

dải liên tục và có thể được ấn định hoặc không được ấn định bằng các con số Nếu như các giá trị bằng số được sử dụng, thì chúng có thể là số dương số âm hoặc cả hai

CÁC THANG ĐÁNH GIÁ ĐA TIÊU CHÍ

Để lập thang đánh giá đa tiêu chí, trước hết chúng ta cần khởi sự với

lý luận về cấu trúc (đặc trưng) cần đo lường Lý luận không chỉ cần thiết cho việc thiết kế thang đo mà còn cần thiết cho sự lý giải các điểm số kết quả Bước tiếp theo là việc nêu ra quần thể các tiêu chí sơ khai ban đầu Công việc này được tiến hành dựa theo luận cứ của tác giả, các kết quả phân tích thong tin thứ cấp và nghiên cứu định tính Trên cơ sở của quần thể (tập hợp) các tiêu chí sơ bộ ban đầu này, một tập hợp các tiêu chí nhỏ hơn

được rút ra theo sự phán xét của nhà nghiên cứu hoặc của những cá nhân có

_hiểu biết khác Việc phán xét có thể lấy chỗ dựa là một số tiêu chuẩn định

tính Quần thể (tập hợp) các tiêu chí đã được thu gọn lần thứ nhất có thể vẫn con céng kénh vi thế có thể tiến hành tiếp các bước thu gọn nữa với sự giúp

đỡ của các tiêu chuẩn định lượng

Các cứ liệu của các tiêu chí tiểm tàng trong tập hợp các tiêu chí đã được

thu nhỏ sẽ được thu thập trên một mẫu tiền trắc nghiệm có kích thước lớn Các cứ liệu này được phân tích bằng các phương pháp phân tích tương quan, phân tích yếu tố, phân tích theo cụm, phân tích khác biệt, trắc

nghiệm thống kê Dựa theo kết quả của sự phân tích trên đây, một số tiêu _ chí riêng biệt được tách ra để hợp thành thang đo đã được chất lọc Thang

đo đã được chắc lọc được đánh giá theo tiêu chuẩn độ ổn định và độ sát thực bằng cách thu thập nhiều cứ liệu hơn từ các mẫu điều tra khác nhau

Trên cơ sở đánh giá tính ổn định và tính sát thực, bộ tiêu chí quyết

định cuối cùng được xác định Toàn bộ quá trình xây dựng thang đo đa tiêu

Trang 36

Biéu 13: 4 Phát triển luận cứ

Đề xuất tập hợp các tiêu chí sơ bộ ban

-——==~~~~~—= đầu trên cơ sở luận cứ, thông tin thứ cấp và nghiên cứu định tính Hình thành bộ tiêu chí được thu gọn po trên cơ sở phán xét định tính Thu thập cứ liệu từ một mẫu tiền trắc nghiệm có kích thước lớn a Tiến hành các phân tích thống kê ¬ = - m4 _.Ơ Hình thành thang đo "Được chất lọc" a Thu thập cứ liệu từ các mẫu khác nhau Đánh giá tính ổn định (bền vững), tính sát thực và tính khái quát của thang đo ì mm Hình thành thang đo chính thức

ĐÁNH GIÁ THANG ĐO

Thang đo cần phải được đánh giá dưới góc độ tính chính xác và tính

phù hợp Tính chính xác và tính phù hợp thể hiện thông qua tính ổn định,

Trang 37

giá tính ổn định là: Đánh giá tinh ổn định trắc nghiệm - tái trắc nghiệm, các hình thái đối lập của tính ổn định và tính ổn định nhất quán bên trong Tính

sát thực được đánh giá thông qua sự giám định về tính sát thực nội dung,

_ tính sát thực chuẩn mực, và tính sát thực cấu trúc

TÍNH CHÍNH XÁC CỦA SỰĐO LƯỜNG

Chỉ số đo lường là con số phản ánh một đặc trưng nào đó của khách thể Chỉ số đo lường chưa phải là trị số thực của đặc trưng đó, nó mới là tri

số quan sát Sự biến đổi của các yếu tố có thể tạo ra sai số đo lường Sai số đo lường là sự khác biệt giữa trị số quan sát (đo lường) với trị số thực của đặc trưng được đo lường Trị số thực của đặc trưng được đo lường có thể được trình bày bằng biểu thức sau:

Xo = X, + Xp + Xp Xo = Trị số quan sát hoặc đo lường - X, = Trị số đích thực của đặc trưng

ÄXs = Sai số hệ thống Xạ = Sai số ngẫu nhiên

Sai số đo lường tổng hợp được cấu thành từ sai số hệ thống X; và sai số ngẫu nhiên Xạ Sai số hệ thống tác động đến kết quả đo lường theo một phương thức không đổi Sai số ngẫu nhiên ngược lại, không phải là một hằng số Nó tiêu biểu cho các yếu tố nhất thời có ảnh hưởng đến chỉ số đo

lường theo nhiều cách khác nhau mỗi một khi chúng ta tiến hành đo lường Tính ổn định: Tính ổn định phản ánh cấp độ nhất quán của các kết

quả đo lường lặp lại Các nguồn sai số hệ thống không có ảnh hưởng đến tính ổn định bởi vì chúng tác động đến chỉ số đo lường theo một khoảng không đổi và vì thế không thể tạo ra các số liệu thiếu nhất quán Ngược với

sai số hệ thống, sai số ngẫu nhiên sản sinh ra sự thiếu nhất quán, tính ổn

Trang 38

Tính ổn định được đánh giá trên cơ sở xác định mối tương quan biến

thiên hệ thống trên thang đo Chúng ta phải xác định mối liên hệ giữa các chỉ số đo lường thu được từ các phương thức điều hành thang đo khác nhau Nếu mối liên hệ cao thì có nghĩa thang đo đã tạo ra các kết quả nhất quán

và như vậy nó có tính ổn định Các cách tiếp cận để đánh giá tính ổn định bao gồm cách tiếp cận để đánh giá tính ổn định bao gồm cách tiếp cận trắc

nghiệm - tái trắc nghiệm, cách tiếp cận theo hai hình thức (phương án) thang đo; và các phương pháp xem xét tính nhất quán nội tại

TINH ON ĐỊNH TRẮC NGHIỆM - TÁI TRẮC NGHIỆM

Trong cách tiếp cận này, các thành viên tham gia trắc nghiệm được

đo lường bằng các bộ tiêu chí đo lường giống nhau tại hai thời điểm khác nhau trong cùng một điều kiện như nhau Hai thời điểm thường cách nhau hai đến bốn tuần Mức độ giống nhau giữa các kết quả trong hai lần đo

lường được ước lượng bằng hệ số tương quan giữa chúng Hệ số tương quan

càng lớn, tính ổn định càng cao

Có một số vấn đề đặt ra đối với cách tiếp cận trắc nghiệm tái trắc

nghiệm trong việc đánh giá tính ổn định Thứ nhất đó là tính nhạy cảm của cách tiếp cận này với khoảng thời gian giữa các trắc nghiệm Khoảng thời gian càng dài tính ổn định càng thấp Thứ hai, đó là việc các kết quả đo

lường lần đầu có thể làm cho đặc trưng được đo lường bị biến đạng Ví dụ

việc đo lường thái độ của mọi người đối với các sản phẩm sữa có nồng độ

chất béo thấp có thể làm phát sinh ý thức về sức khỏe ở họ và tạo ra ở họ

thái độ thiện cảm với các sản phẩm sữa có hàm lượng chất béo thấp Thứ

ba, cách tiếp cận này có thể bất lực trong việc tạo dựng sự đo lường lặp lại (ví dụ khi đề tài nghiên cứu là phản ứng đầu tiên của mọi người đối với một

sản phẩm mới) Thứ tư, sự đo lường lần đầu có thể gây ra hiệu ứng ở lần đo

lường thứ hai hoặc tiếp theo Những người được tham gia trắc nghiệm có

Trang 39

mối tương quan giữa mỗi tiêu chí với chính bản thân nó Các mối tương quan ở đây có khuynh hướng cao hơn các mối tương quan giữa các tiêu chí đo lường khác nhau thông qua các cách điều hành Do những vấn dé nêu

trên, tốt nhất nên kết hợp cách tiếp cận trắc nghiệm - tái trắc nghiệm với các

cách tiếp cận khác

CÁCH TIẾP CẬN HAI PHƯƠNG ÁN

Đó là phương pháp đánh giá tính ổn định bằng cách thiết kế cùng

một lúc hai hình thức thang đo tương đương nhau Cùng một nhóm người được đo lường bằng hai thang đo này tại hai thời điểm cách nhau từ hai đến

bốn tuần Các kết quả thu được từ hai hình thức thang đo khác nhau này được xem xét dưới góc độ tương quan để đánh giá tính ổn định

Ở đây có hai vấn dé nổi lên Thứ nhất phải chi phí thời gian và tài chính cho việc thiết kế thang đo đồng đẳng Thứ hai, thiết kế hai thang đo đồng đẳng nhau là một công việc khó Hai hình thức (phương án) thang đo

cần phải đồng đẳng với nhau về mặt nội dung Với nghĩa hẹp, điều này đòi

hỏi các bộ tiêu chí đo lường khác nhau phải có các giá trị trung bình phương sai và các mối liên hệ tương quan như nhau Thậm chí khi các điều

kiện nêu trên đã được thỏa mãn, hai phương án thang đo vẫn có thể không

tương đồng với nhau về mặt nội dung Ở đây mối tương quan lỏng lẻo có liên quan chặt chẽ cả hai: Thang đo không ổn định hoặc hai hình thức thang

đo không đồng đẳng với nhau

CÁCH TIẾP CẬN DANH GIÁ TÍNH ON ĐỊNH THƠNG QUA TÍNH NHẤT QUÁN NỘI BỘ

Cách tiếp cận này được sử dụng để đánh giá tính ổn định của thang

đo tổng hợp, nơi hợp nhất của các tiêu chí riêng biệt nhằm tạo ra một chỉ số tổng hợp Trong loại thang đo này, mỗi tiêu chí đo lường một khía cạnh nào

đó của đặc trưng mà thang đo tổng hợp nhằm vào Các tiêu chí cần phải nhất quán trong chỉ báo về khía cạnh của đặc trưng mà nó đo lường

Chỉ số đo lường đơn giản nhất về tính nhất quán bên trong (nội tại)

Trang 40

được phân thành hai nửa và các chỉ số tổng hợp của mỗi nửa được xem xét trong mối tương quan với nhau Hệ số tương quan cao giữa hai nửa biểu thị

tính nhất quán bên trong cao Việc phân đều các tiêu chí đo lường có thể

căn cứ theo số chắn hay số lẻ tương ứng với tiêu chí hoặc dựa theo nguyên

tắc ngẫu nhiên

TÍNH SÁT THỰC

Tính sát thực đó là cấp độ theo đó có thể khẳng định rằng các khác biệt giữa các chỉ số đo lường phản ánh các khác biệt đích thực giữa các khách thể được đo lường, chứ không phải sai số hệ thống hay sai số ngẫu

nhiên Tính sát thực hoàn hảo hiện diện khi không có sai số đolường Tính sát thực nói chung được ước lượng thông qua tính sát thực nội dung, tính sát

thực chuẩn cứ và tính sát thực cấu trúc

- Tính sát thực nội dung:

Đó là sự đánh giá chủ quan nhưng có hệ thống về việc nội dung của

thang đo có khả năng đại diện như thế nào cho các nhiệm vụ đo lường mà chúng ta đặt ra Ở đây nhà nghiên cứu phải xác định xem các tiêu chí của thang đo có phù hợp cho việc lột tả toàn bộ diện mạo của cấu trúc (đặc trưng) được đo lường hay không

- Tính sát thực chuẩn cứ:

Tính sát thực chuẩn cứ cho biết thang đo trong quá trình thực hiện vai trò của mình có đảm bảo được mối liên hệ mong muốn với các biến cố chuẩn cứ khác không Các biến số chuẩn cứ có thể là các đặc trưng dân số

tâm lý đo đạc được trên các thang đo khác - Tính sát thực cấu trúc:

Ngày đăng: 08/11/2022, 23:08