TRIET HQC, SO 10 (317), THANG 10 - 2017 TIT DUY LSGIC VA BAN CHAT CUA TU DUY KHOA HOC Vfl Vdn Vidn' ' Ph6 giio su, tiin sT, Vi§n Triit hpc, Vifn Hin lim Khoa hpc xi h§i Vi$t Nam Nh|n bii ngiy 15fliing8 nim 2017 ChJp nh§n ding ngiy thing nim 2017 Tom tat: Tfl gdc dp nhgn thfle lugn, bdi viet phan tich mft each khai quat cae n^Ta khac cua tu duy; tr6n co sd do, lam ro ban ehdt eua tu logic - tu theo tinh tdt ylu eua nd, la pham ehat Ioai, la cai chung vdn cd ciia mpi eon ngudi ey thd Dong thdi, lugn giai dh Iam ro ban chdt ciia tu khoa hpe, la sy thing nhat hiiu ea giu'a phucmg phap luan chi dgo va tu Idgie Bai viet eiing phdn tieh edu true ciia tu khoa hpc, bao gom: 1/ Cau triic hpp: Phuang phdp ludn chi dgo + tu Idgic, ttong tu Idgic Id ylu to cot ylu In dinh; 2/ Cdu true rpng: Vdn tri thuc (dau vao) + phuang phdp lugn chi dgo + tu Idgic + kha nang vgn dyng tti thiic, long kit thyc tiin (ddu ra) Qua dd, bai viit cung ggi f nghia ciia each hilu viec ren luyf n, nang eao nSng lye tu khoa hpe TCr khda: Tu Idgie, tu khoa hpc, cdu tnic cua tu khoa hpc Ngdy nay, nhdn logi dang bude vdo ndn vdn minh tri tud vd kinh td tri thfle, vdn dl ndng cao ndng lyc tu duy, dd cd tu khoa hgc cd mft y nghia ddc bift quan ttgng CJ nude ta hidn nay, trinh khoa hgc, cdng nghf edn thdp, nang lyc tu khoa hge chua cao nen vifc nang cao ndng lyc tu khoa hgc lai eang cd y nghia edp bach Tuy nhidn, de ndng cao ndng lyc tu khoa hgc, trude hdt phdi ndm bdt dugc ban chdt ciia tu khoa hgc Day Id mgt vdn dd phue tap, cdn nhidu khflc mdc Trong bai vidt nay, chflng tdi cd gdng gdp phdn lam sdng td vdn d l ndi ttdn l.Tv yk tir logic Khdi ni$m tu Tu Id mft hidn tugng rdt phflc tgp Sy t i n tgi vd hogt dgng cfla tu dugc nhiiu khoa hgc quan tam, chdng hgn: Sinh ly hgc than kinh cao cdp nghien ciiu hoat dgng ttao ddi ehdt cua hf than kinh tinng uong Tam I^ hgc nghidn cihi cdc hogt dgng tdm ly cfla tu Triet hpc nghidn eflu tu tfl khia cgnh quan hd gifta tu va tdn tgi; giua y thfle vd v | t chdt; giua tirdi thdn vd ty nhidn Ldgic hge nghidn cim tu vdi tu each Id qua trinh sdn xudt tri thfle Ngay nay, khoa hgc hifn dgi, xudt hipn cdc nghidn cuu lidn ngdnh vd tu duy, nhu didu khien hgc, phdng sinh hgc, ky thudt hgc , eiing khai thde khia cgnh md hinh hda tu nhdm xdy dung tu nhdn tgo Chflng ta cung cd thi cdn kl nhidu VI dy nfta Trong bdi vidt nay, chflng tdi gidi han cdeh tiip can ttong ludn ban cfla minh tfl gdc df n h ^ thfle luin Tfl lap trudng v|t bifn chung vdi each tidp cln dd neu, chflng ta cd thd thdy thugt ngft tu Id thugt ngft da nghTa Chi it cd ba nghta thudng dugc sfl dyng nhu sau: 1/ Theo nghia rfng nhdt (triet hge): Tu doi Igp vdi ton tgi gidng nhu f thue ddi lap vdi vgt chdt, tinh tiidn ddi lap vdi ty nhidn Tfly theo Igp truang, quan diim (ggi chung Id cac quan (fidm) tiid gidi quan ma TU DUY LOGIC VA BAN CHAT COA TU DUY KHOA HQC ban ehdt cfla tu dugc hidu khde nhau; chdng hgn, vdi ehfl nghia tam thi tu la cdi sdng tgo, edn vdi chfl nghTa vdt thi tu Id cai phdn anh Lap trudng the gidi quan v l tu se chi phdi (dinh hudng) boat ddng cfla ngudi, cd hogt ddng tu 2/ La nhiing quan niem, chudn muc (ggi chung Id cdc chudn mye) duge hinh ttong lich sfl hoge duge ehfl thd ty gide lya chgn vd chflng ed vi tti chi phdi boat dgng cfla ngudi, ttong dd cd hogt dfng tu tgi mdt thdi dilm nhdt dinh, ttong mdt phgm vi nhat dinh Vi dy: Ndi ddn ddi mdi tu la dflng theo nghia ndy D l i mdi tu thye chat Id thc^ ddi quan ni$m dang chi phdi hogt dgng nhgn thac vd th\ee tien cfla chflng ta (quan niem cu ve chfl nghta xd hdi) bang mgt quan nifm khdc (quan nidm mdi ve chfl nghta xd hdi) Quan nifm mdi ndy ciing cd vai ttd chi phoi mgi boat ddng cfla chflng ta ttong thdi ky ddi mdi Cac chudn muc tu d ddy thudng ddng vai trd nhu nhiing nguyen tac dieu chlnh hogt dfng cfla ngudi, dd cd hogt dfng ciia tu Cflng vdi cdc nhdn td thd gidi quan, cac chudn myc bidu hifn vdi tu each nhiing nguyen tdc phuang phdp ludn d cac cap df khdc ttong vifc dieu chinh (dinh hudng) hogt dpng cua ngudi Chang hgn, d cap ttilt hge, cdc quan nidm sieu hinh dieu chinh (dinh hudng) cho boat dgng tu duy, chung ta cd tu sieu hinh, cdn cac quan nifm bifn chiing dieu chinh (dinh hudng) cho boat dfng tu se dan den hinh tiidnh tu bifn chiing d cap dg tam Iy - xd hgi, vdi sy dilu ehinh cfla cdc chudn myc tam ly - xd hgi phuang Ddng, cdc chudn myc tdm ly - xa hgi phuang Tdy sd dan ddn su hinh tiianh tu phuang Ddng, tu phuang Tdy, v.v 3/ Xet tCr gdc df Ldgic hgc, tu vdi tu 52 cdeh hogt ddng cfla nao ngudi nhdm sdn xuat tri thfle, cdn ggi Id ttr dity dang nhgn thiic Theo nghTa ddy dii, tu dang nhan thuc cd the dugc phdn ehia thdnh hai bf phan khdc nhau: Thu nhdt, tu hogt ddng theo ti'nh tdt ylu cfla nd, tflc tir hogt ddng theo cdc nguydn tdc tdt ydu ma bdt ky mgt ngudi cy thd, binh thudng nao cung cd ttong qua trinh hogt ddng sdn xudt tii thuc - la tu ldgic (theo nghta hpp) Ldgic hge hinh thfle di sdu nghidn cflru ve bf phdn tu ndy [Xem: 4, tt.l03] vd cdng eang nhgn thfle day dfl ban ve nd; ehinh vi vgy, ngudi ta dinh nghta: Ldgic hge Id khoa hgc vi tu dung ddn (boat dfng theo diing tinh tat ydu von ed cfla nd) hay la khoa hgc vl tu ldgic Thu hai, nhung boat ddng khdng theo tinh tat ydu, bao gdm nhung boat dgng theo nghia thfl nhat va thfl hai da ndi tten va nhiing ydu td true giac (cdn dugc ggi la ndng lyc sang tao cua chu the) True gide \k boat dgng cfla tu theo tinh ngau hiing phu thuge vao ndng lyc sdng tao cua mii ca nhan cu the ttong viec phat hifn tu tudng mdi - ede phdt minh Nhiing hogt ddng khdng mang tinh tat yeu cho nen Logic hpc khdng thi xay dyng thdnh ede quy ludt, quy tdc ldgic nhu bg phan tu ldgic tiieo nghia hep Vi vay, khdng thd xdy dyng duge Ldgic hgc phat minh Tuy khdng thd xdy dyng dugc Logic hoc phat minh, nhung Ldgic hgc cd vai trd bo ttg khong thi thiiu ddi vdi cdc phdt minh; ehdng hgn, nhd phan tieh Idgie ede sy kien ma ngudi ta phat hifn tinh hudng co vdn di; nhd phan tich toan canh van de ma gen md cho chung ta hudng tim kiem gid thuyit mdi; nhd chung minh ldgic ma chiing ta thira nhgn hoge bde bo gid thuyit mdi Lidn quan tdi vdn de nay, nhieu nhd khoa hpc da khdng dinh rdng, "khdng cd Ldgic hpe phdt minh, nhung eung khdng mgt phat minh v u VAN VIEN ndo tiulu Logic hgc" [3, tt.6] Do khdng thd nhan thuc ddy dfl bf phgn ndy (phi ldgic, trye gide), dong thdi vai ttd to ldn cfla Logic hgc dli vdi phdt minh, ndn theo nghia rfng, tu dang nhdn thfle dugc quy gian ddng nhdt vdi tu ldgic Bdn chdt eua tu logic Qua sy phdn tich tren day, chung ta cd the nhgn thdy, hogt dgng sdn xudt tri thfle, tu Idgie ed vai trd hdt sue quan trgng, nd Id phdn cdt I5i cfla hogt dfng sdn xudt tri thfle cd nhiing ddc tnmg co bdn sau day: 1/ Nd bilu thi ddc tnmg Iodi mgt each cdn bdn nhdt - da la ngudi thi phai cd tu logic; 2/ Nd mang tinh tat yeu vd bidn nghia Id nhiing boat dgng cfla nd cd thd nhfn thfle vd xay dyng cdc quy luat, quy tde dh van dung eho hoat dfng tu cfla mgi chu thd; 3/ Ddy la bf phdn hogt dfng bin vflng, chung nhdt giing d mgi chfl thi Mgt edch khdi quat, chflng ta cd till dinh nghta.- Tu diry ldgic Id tu theo tinh tdt yiu cua nd, tac Id tu hogt d0ng theo cdc nguyin tdc, qtiy tdc tdt yiu nhdm ddm bdo diiu kiin cdn cho viie dgt tdi chdn ly khdeh quan qud trinh sdn xudt tri thac mdi CJuan nifm Id hgp 1^ Nd hodn toan tuong flng vdi quan nifm ve Logic hgc khoa hgc ve tu Idgic md mgt sd tdc gia dd su dyng: "Ldgic hge la mdt khoa hgc nghiin ciiu nhihig tu tudng eua ngudi vi mat hinh thuc logic cua chung vd xay dung nhiing qi^ lugt, quy tde, md viie tudn thu nhiing qt^ lugt, quy tdc dy la dieu ki^n edn di dgt tdi ehdn ly khdch quan qud trinh riit tri thuc suy dien " [2,tt.19] 2/ Tu Idgic cd nhiing d§e diem sau: - Tinh xac dinh; - Tinh nhdt quan, phi mdu thuan; - Tinh lidn tyc; - Tinh cd cdn cfl viing ehdc; - Tinh ehdt ch€, chinh xde Nhiing d§c dilm ndy dd duge khdi qudt thdnh cdc quy lu|t ca bdn cua Ldgic hge Ban chat cua tir khoa hgc Mye dich cfla nhgn thuc khoa hgc Id phdt hipn cdc thufc tinh, cdc quy lugt vdn ddng, phdt tridn ciia ddi tugng vd vdn dyng cae kdt qud da dugc nhgn thuc vdo hogt ddng thye tien vi nhung Igi ich cfla ngudi Tu khoa hgc eiing khdng ndm ngodi mue dich dd Dd lam ro bdn chat ciia tu khoa hge, chflng tdi tap trung vao hai nfi dung CO bdn: Khai nifm tu khoa hgc va cau trfle eua nd Dd thye hien myc dich tidn, trude hdt, chflng ta hay xem xet nd ttong pham vi eua hogt dgng tu thuan tfly (hogt ddng thudn tfly cfla tu duy) - boat dfng ndi tai cfla tu ttong qua trinh sdn xuat tri thuc (chua cd ylu td bdn ngodi) Mft nhifm vu quan ttgng cfla tu khoa hgc la sdn xudt tti thuc mdi Vi vdy, chflng ta phai xem xet tu khoa hgc tu gdc cua tu dang nhdn thfle Nhu dd phdn tich d phan tten, tfl gdc thi tu logic Id mgt bg phdn ca bdn thiit yiu, khdng thi thiiu cfla tu khoa hgc Sd dT nhu vgy, bdi vi tu logic la bd phgn sdn xuat tri thfle theo tinh tat yeu cfla nd, edn nhidm vy co bdn cfla tu khoa hpc cimg Id san xudt tri thfle mdi Tuy nhidn, boat ddng sdn xudt tri thfle mdi - tu ldgic cdn bi chi phdi (dinh hudng) bdi nhiing quan £em, ehuan myc duge xem xet Iheo nghia thu nhat vd ngMa thfl hai vd tu dd duge phdn tieh d phdn tren Cac quan diem va chuan myc dieu chinh cdc hogt ddng cfla tu ndy tao cdc nguydn tac phucmg phdp Iudn Cae nguyen tde ndy ket hgp hiiu co vdi tao mdt logi hinh phuang phdp ludn chi dao va Id dau hifu co ban de phan bift cac logi hinh tu Chinh vi vgy, ciing vdi tu ldgic, logi hinh phuang phdp ludn chi dgo dang djnh hudng cho hogt ddng tu eUng trd thdnh mgt bo phdn ca bdn cfla tu khoa hgc Sy khde bift giiia hai bf phdn la: 1/ Ndu bg phan thfl nhat - tu 53 TU" DUY L6GiC VA BAN CHAT CUA TU DUY KHOA HQC logic Id mang tinh tdt ylu, chung cho mgi ehfl thi (cfng ddng, cd nhan) till bd phgn thfl hai khdng mang tinh tdt ylu, chung cho mgi ngudi md phy thugc vdo tung cfng ddng ey till, flidm ehi tiing cd nhdn cy till; 2/ N I U bf phdn thfl nhdt thdng qua cac thao tdc tu (ldgic) dl sdn xudt tri thfle thi bd phgn thfl hai chi tham gia vao vifc djnh hudng eho hoat dgng san xudt tri thfle Tfl sy phan ti'eh trdn, chung ta cd thi dua dinh nghta ve khdi nifm tu khoa hge nhu sau: Tu khoa hgc Id logi hinh tu sa dung cdc thao tdc cua tu logic dudi su dfnh hudng eua mgt logi hinh phuang phdp ludn chi dgo nhdm sdn xudt tri thac mdi phdn dnh dudi dgng khdi qudt hoa trim tugng hda vi ede thude tinh bdn chdt, cdc quy ludt van ddng, phdt trien cua ddi tugng dugc nghien euu vd vi$c vgn difng cae tri thuc cd dugc vdo ddi sdng vi nhiing lgi ich cua ngudi Nhu tten da chi ro, phan chia ede logi hinh tu khoa hge, chiing ta edn cfl vdo logi hinh phuong phdp ludn ldm ddu hifu phdn chia Vdi each tiip can nhu vdy, chflng ta cd thd phdn bidt cdc logi hinh tu khoa hgc khdc nhau; chdng hgn, tu bifn chung, tu sidu hinh; tu phuong Ddng, tu phuong Tdy; tu quy ngp - kinh ngifm, tu gid thuylt diln dich, V.V Trong tdt cd ede logi hinh tu ndy cd mdt bd phdn chung, dd la tu ldgic, nhung ttong moi logi hinh Igi dugc dinh hudng bdi mft phuong phap lugn khdc Do pham vi bai viet, chflng tdi khdng di sdu vdo vdn dl phdn Ioai ndy D I ldm rd bdn ehdt ciia tu khoa hgc, ngodi vifc dua dinh nghta v l khai nifm ndy, chflng tdi mudn lam rd cdu trfle cfla nd Qua sy phdn ti'eh d cac phdn tten, nlu xet cdu true h?p - cdu trfle nfi tgi cfla hogt dgng ttong tu thi cdu trfle cfla tu khoa hgc gdm hai bg phgn: T u logic vd phuang phdp lugn chi dao 54 Quan nifm tren ddy Id hodn toan hgp ly, bdi tu khoa hge vfla phM tuan thfl cdc quy Iuit, quy tdc logic ttong vifc sdn xuat tri thfle, vfla chiu sy chi phii (dilu chinh) cfla cdc quan dilm phuang phdp lugn nhdt dinh Trong hai bf phgn nay, tu ldgic Id ylu td chung cho mgi chfl thi tu mang tinh I n dinh, tdt ylu, cdn phuang pl^p Iudn la ylu t l thay ddi tfly thufc vao lap trudng, quan dilm cua ehfl thd (cdng ding, trudng phdi, th|m ehi Id cd nhdn) tu Vi dy, ttong cac logi hinh tu ndi tten thi tdt ed eac logi hinh ay deu cd bg phan ehung la tu ldgic, cdn bf phgn phucmg phdp lugn thi khdc Nhu vdy, cd thi ndi, tu khoa hgc Id su thdng nhdt hOu ca giiia tu logic vd phuang phdp lugn chi dgo Thyc tien phat trien cfla khoa hgc dd chi rdng, sy phat tridn cfla khoa hgc, kl cd triit hge dd xudt hifn nhiiu trudng phai, khuynh hudng khae Sy khac dy chfl ylu Id lap trudng, quan dilm phuong phdp Iudn khde gdy ra, cdn tu logic la gidng Ciing tfl dd mdi thay rdng, tu ldgic Id ylu td cdt ylu eua tu khoa hgc Tu logic la pham chdt chung cua Iodi ngudi, nd vua mang tinh bam sinh (Ioai), vfla dugc ren luyf n thdng qua hge tap vd ttong thyc tiin Khi danh gia ve vai tro cfla tu Idgie, Ph.Angghen da viit: "NIU nhiing tien dl cfla chflng ta Id diing vd neu chflng ta vgn dyng mgt each ehinh xac nhiing quy luat cfla tu (tu ldgic V.V.V.) dli vdi nhung tiin dl dy tiii kit qua phdi phfl hgp vdi hifn thyc " [I, tt.829] Cflng vdi tu duy, vifc van dyng phuong phap luan chi dgo phfl hgp ciing cd f ngMa rdt quan ti^ng, nd anh hudng tdi vifc nang eao Mfu qud cfla hogt dfng tu duy; ngugc Igi, nlu lya chgn mft phuong phdp lu|n cW dao khdng phfl hgp, nd se Iam giam hifu qua cfla hogt dgng tu Tfl phfl hgp d ddy dugc diing theo ngM rfng - phu hgp vdi myc dich, nhifm vy nghidn euu, vdi mdi trudng VU VAN VIEN vdn hda - khoa hgc, phii hgp vdi phdm chdt tam - smh ly cfla ehfl thi nghidn cfln Bdn eanh cdu tnic hpp, chung ta eung can Idm r6 cdu true rdng cfla tu khoa hgc Dieu Id edn thilt, vi tu khoa hgc khdng ddng kin ttong hogt dfng cfla nao ngudi md Iudn gdn ket vdi mdi trudng ben ngoai; ehdng ban, dl sdn xudt tri thuc phdi cd von ddu vdo, ding thdi d l van dyng tri thfle phdi cd ddu Id thyc tien xa hfi Tu each hilu ttdn ddy, nlu x^t todn bg qud trinh sdn xudt tri thuc, ttong dd cd quan hf cua tu vdi mdi trudng xung quanh, cdu trfle rgng ciia tu khoa hge cd eac bg ph|n sau: - V i n tri thfle - ddu vdo (tu lifu cdn thilt cho qud trinh sdn xudt tri thuc); - Phuong phdp lufn chi dgo (cac quan dilm, chudn mye phuong phdp lu|n dflng dl dilu ehinh hogt dfng sdn xudt tti thfle cfla chfl thi); Tu Idgic (cac hogt dfng theo nguyen tdc, quy tdc khdch quan tdt ylu dd sdn xuat tri thuc); - Kha ndng van dyng tri thfle vdo thfle tien, ting kit thyc tien - ddu Khd ndng v|n dyng tti thfle vdo thyc tiin duong nhidn phdi Id mft ylu to cdu thdnh cfla tu khoa hgc, bdi vifc vgn dyng tri thuc da cd vdo thyc tien vi nhihig lgi ich cfla eon nguoi Id mft nhifm vy co ban cfla tu khoa hgc Cdn vifc xIp kha ndng ting kdt thyc tien vdo ddu la cd cdn cfl d cho, van dyng thyc tiin la vifc ldm thudng xuydn, tong kit thyc tiin cd vai ttd quan ttgng dl rut kinh nghipm nhdm nang cao hifu qud cho sy v | n dyng d nhihig ldn tiep theo Day Id myc dich chfl ylu cfla ting ket thyc tien Tuy nhien, tong kit thyc tiin cung dem Igi nhftng til lifu cdn thilt bS sung cho dau vao cfla tu khoa hgc Mgt cdeh khdi qudt, chflng ta cd thi md td cdu true ciia tu khoa hgc nhu sau: - Cau trfle hpp: Phuong phdp lugn cM dgo + tu Idgic - Cau trfle rgng: Von tri thfle + phucmg phdp ludn ehi dao + tu Idgic + khd ndng vdn dyng, ting kit thyc tien Vifc ldm ro khai nidm, cau true eiia tu khoa hgc cd y nghta hit sue quan ttgng, d ^ bidt Id ttong vifc nhgn didn dflng dan ban ehat cfla tu khoa hge, eiing nhu vifc ndng eao ndng lyc tu khoa hge d nude ta Wf n Ve nhgn thac vai trd cua tu logic Trong thdi gian qua, nhdn thfle ehua ddy dfl vd tu khoa hgc dan din xem thudng tu ldgic, thdm ehi cd thdi ky (dde bidt Id trude ddi mdi) khdng it ngudi xem tu logic la tu sidu hinh Ciing tfl dd, vifc hgc tgp mdn Logic hge (hinh thfle) ehua dugc coi ttgng Trude thdi k^* ddi mdi, mdn hge ndy ehi dugc gidng dgy d mdt so it khoa cua mdt vai trudng dgi hge Bude vao thdi ky ddi mdi, mdn hgc dugc dua vao gidng dgy d tat ed ede trudng dai hgc Song, sau vdi nam dugc xem Id mdn hgc bdt buf c thi la mdn ty chgn Chflng tdi cho rdng ddy Id mft tMdu sdt ldn Ldgic hgc la mdn hgc ve tu Idgic, ylu td co bdn nhat cua tu khoa hgc Vifc khdng chu ttgng hgc tgp, ren luyf n nd Idm cho ky nang tu ldgic ydu kem; ttong do, theo y kidn ciia nhiiu nha nghidn ciiu, thi tu truyen thdng Vift Nam n ^ g vd kinh nghifm (ddi thudng - V.V.v.), ylu vd tu ldgic d mgt sd nude, mdn hgc (logic hgc truyin thing) duge hgc d bdc phd thdng Didu ndy giup cho thd hf trd dugc ren luyf n kf ndng tu logic tfl rat sdm O bac dai hgc, sinh vien dugc hgc mdn logic hgc hifn dai, vi vay dilu kifn dd phdt ttiln tu logic se tot hon Dd din Iflc chflng ta can nhgn thfle mft each diing ddn hon ve vifc giang day vd hgc tap mon Logic hgc Ve vdn de ndng cao ndng lire tu Trong thdi gian gdn d^y, cd nhiiu dl tai 55 TU DUY LOGIC VA BAN CHAT CUA TU DUY KHOA HQC ngMdn eflu, luan dn, Iuan vdn vl nang eao ndng lye tu Dilu chung td vdn dl ndng cao nang lyc tu dang trd thdnh nhu cdu cdp bach d nude ta hifn Tuy nhidn, theo chflng tdi, giai quyit vdn dl eung cdn nhiiu bat c|p Chdng ban, v l he vdn dl ndng cao nang lyc tu khoa hgc Hidn cd nhiiu dd tai vd ndng cao nang lyc tu khoa hgc, nang eao nang lyc tu bifn chflng, nang eao nang lyc tu if ludn, v.v cho ede dli tugng khdc nhau, d cac cdp dd khdc Cd mgt tinh hinh chung Id cac dl tdi ddu hudng den tinh khoa hgc ciia cac logi hinh tu duge ngMdn Cliu Dieu dd hodn todn de hieu Nd phan dnh mft thye td Id nhu cau vd vgn dyng tu khoa hgc vao gidi quyet nhiing vdn dl ciia cufc sdng dang ngdy edng duge y thfle rd Chdng ban, ndi ve tu Iy Iuan thi dd phdi la tu ly Iuan khoa hgc mdi cd y ngMa, cdn tu I^ lugn tu bifn tM khdng ed giatti,th|m ehi la cd hgi Cd mft thyc td niia la, phdn ldn cdc ngMdn cfln deu quy gidn tu khoa hgc vl tu bifn chflng vgt Sy quy gidn ndy khdng sai Trong thdi dgi Mfn nay, chung ta hodn todn cd co sd dl khdng dinh tu biin chung vdt Id tu khoa hgc hi?n dgi (hay cM it tM ve co bdn la gdn nhau) Ndu quy gidn nhu vdy tM vl eau trfle hep, chflng ta cd the khdng dinh, tu khoa hgc la s^ thdng nhdt hOu ea giiia tu logic vd phuang phdp lugn bi^n ehung vgt ^ Tuy nMdn, khdng nhdn thfle ddy dii ve tu bifn chflng vat, nen phdn ldn eac nghidn eflu deu khdng thdy dugc tu logic la bd phdn hgp tiidnh cfla tu khoa hge, ciing tflc Id mft bf phgn cfla tu bien chflng vdt Tfl dd dan din quan mfm rdng tu bifn chflng vgt ehi nhdt duge phdp bifn chflng vgt nghidn cim ma logi bd hodn todn tu logic Cdc n ^ d n cflru chfl yeu xoay quanh cac nguyen tdc phuong phdp Iudn cfla ph^p bifn chiing, cd till la cfla cd Ldgic bifn chflng (cung ehi la mft bilu hidn cua phdp bifn chiing) dl luan gidi, tfl khai mdm din thyc trgng vd gidi phdp Nhin chung, nhihig n ^ i d n eflu nhu v | y khdng dd dfng gi, tiiam cM cdn logi bd tu ldgic Chflng tdi cho rdng, each ngMdn cfln nhu vgy la thieu thuylt phye Cdn cfl vao cdu tnic (cung Id ndi dung) eua tu khoa hpc tin cdc nguyen tdc cfla phdp bifn chflng vdt cM ddng vai ttd Id phuang phdp luan cfla tu khoa hgc, ehfl chua phai la toan bf tu khoa hgc Va, vl vdy, chang han, dd ndng eao ndng lyc tu khoa hpc, chung ta phai chfl y tdi vifc ndng cao nang lyc cfla tat cd cac yeu td eau ndi tren, dge bidt la ndng eao nang lyc tu logic, chfl khdng ehi t | p trung vao ylu t l phuong phap ludn bien chflng vgt Duong nhien, van dl ndng cao ndng lye tu khoa hgc khdng cM lidn quan den ede yeu td ttong cau tnic eiia nd md edn lien quan den cdc yeu td khac; chdng ban, thyc ttang tu duy, moi trudng kinh te - xd hdi, vdn hoa - cMnh tii V.V Trong phgm vi bai viit nay, chflng tdi khdng thd di sau hon nfla Tu ndi chung, tu khoa hgc n6i rieng la linh vyc het sue quan trgng bdi mpi hogt ddng cfla ngudi ddu phdi thong qua tu cfla hg Tu nhu thi nao tM ket qud se nhu thi Tuy nMdn, ddy cung Id dl tai hit sue phiic tap, cdn nMdu f kien khdc Trong bdi viet nay, chflng tdi manh dan trinh bay mgt sd quan mfm rieng ciia minh, rat mong duge df e gia quan tdmtiraoddi Tai lieu tham khao [1] [2] [3] C M i c v i Ph.Angghen (1994), Todn tgp, t.20 Nxb Chinh trj Quoc gia, H i Nfi D.P.Gorki (191A), Ldgic hgc, Nxb Giio due, HiN^i P.V.Kopnhin (1985), Ldgic nghien cuu khoa [4] hpc, Nxb Khoa hpc, Mitxccrva (tieng Nga) V.I.Lenin (1981), Todn tgp, t.29, Nxb Tiin b$, Mitxcova ... eUng trd thdnh mgt bo phdn ca bdn cfla tu khoa hgc Sy khde bift giiia hai bf phdn la: 1/ Ndu bg phan thfl nhat - tu 53 TU" DUY L6GiC VA BAN CHAT CUA TU DUY KHOA HQC logic Id mang tinh tdt ylu, chung... nhung Igi ich cfla ngudi Tu khoa hgc eiing khdng ndm ngodi mue dich dd Dd lam ro bdn chat ciia tu khoa hge, chflng tdi tap trung vao hai nfi dung CO bdn: Khai nifm tu khoa hgc va cau trfle eua...TU DUY LOGIC VA BAN CHAT COA TU DUY KHOA HQC ban ehdt cfla tu dugc hidu khde nhau; chdng hgn, vdi ehfl nghia tam thi