PHÒNG GDĐT TAM DƯƠNG ĐỀ CHÍNH THỨC ĐỀ GIAO LƯU HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2017 2018 MÔN TOÁN 6 Câu 1 (5,0 điểm) a) Rút gọn biểu thức b) Tìm số tự nhiên biết c) Tìm hiệu biết rằng và Câu 2 (3,0 đ.
PHỊNG GD&ĐT TAM DƯƠNG ĐỀ CHÍNH THỨC ĐỀ GIAO LƯU HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2017 -2018 MÔN: TOÁN Câu (5,0 điểm) 10.11 50.55 70.77 a) Rút gọn biểu thức: 11.12 55.60 77.84 18 x.5 x1.5x 1000 14 43 : 18 chu so b) Tìm số tự nhiên x, biết: c) Tìm hiệu a b, biết rằng: a 1.2 2.3 3.4 98.99 b 12 22 32 982 Câu (3,0 điểm) 18n a) Tìm tất số tự nhiên n để phân số 21n rút gọn b) Tìm số tự nhiên có hai chữ số, biết số gấp đơi tích chữ số Câu (5,0 điểm) a) Tìm số tự nhiên nhỏ biết số chia cho 11 dư 6, chia cho dư chia cho 19 dư 11 2016 b) Cho p số nguyên tố lớn Hỏi p 2018 số nguyên tố hay hợp số Câu (6,0 điểm) 0 · · Cho hai góc AOx 38 BOx 112 Biết AOx BOx không kề a) Trong tia OA, OB, Ox tia nằm hai tia lại ? Vì ? b) Tính số đo góc AOB c) Vẽ tia phân giác OM góc AOB Tính số đo góc MOx 0 d) Nếu AOx ; BOx , 180 Tìm điều kiện · liên hệ để tia OA nằm hai tia OB Ox Tính số đo MOx theo Câu (1,0 điểm) Cho 100 số tự nhiên Chứng minh ta chọn 15 số mà hiệu hai số tùy ý chia hết cho ĐÁP ÁN Câu a) Ta có: b) Ta có: 10.11 50.55 70.77 10.11. 5.5 7.7 11.12 55.60 77.84 11.12. 5.5 7.7 18 x x 1 x 5x.5 x1.5 x 000 1018 : 218 14 43 : 18 chu so 18 1018 10 5 18 518 x 18 x 2 c) Ta có: a 1.2 2.3 3.4 98.99 1. 1 98. 98 x 3 12 22 32 98 982 12 22 32 982 98 b 98 b 98 98 : b 4851 Vậy a b 4851 Câu 2 101 a) Ta có: A A A 52 53 5101 52 5100 5101 A 5101 n n 101 Lại có: A n 101 b) Giả sử 18n 21n chia hết cho số nguyên tố d d 21M d Khi 18n 3Md 21n 7Md 21n 18n 3 M d Ư(21) 3;7 +Nếu d khơng xảy 21n không chia hết cho +Nếu d đó, để phân số rút gọn thì: 18n 3M vi 21n 7M 18n 21M 18 n 1 M mà 18,7 n 1M n k 1 k ¥ 18n Vậy để phân số 21n rút gọn n k 1 k ¥ Câu 11; a 1 M4 a 11 M 19 a) Gọi số cần tìm a a ¥ * , ta có: a M a 33 M11 a 27 M11 a 28 M4 a 27 M4 a 11 38 M 19 a 27 M 19 Ta có: Do a số tự nhiên nhỏ nên a 27 nhỏ Suy : a 27 BCNN 4;11;19 836 Từ tìm a 809 b) Vì p số nguyên tố lớn nên p chia cho dư p chia cho dư p chia cho dư p 2016 p 1008 2016 nên p chia cho dư p 2016 2018 M 2018 Mặt khác: chia cho dư 2, đó: 2016 p 2016 2018 M p 2016 2018 Vì nên p 2018 hợp số c) Gọi số tự nhiên phải tìm ab với a, b ¥ ,1 a 9,0 b Theo đề bài, ta có: 10a b 2ab 10a 2ab b 10a b 2a 1 Mà 10aM 2a mà a;2a 1 nên 10M 2a 2a a b 10(ktm) 2a a b 6(tm) Vì 2a lẻ nên Vậy số cần tìm 36 Câu a) Do AOx BOx hai góc khơng kể mà có chung cạnh Ox nên hai tia OA OB nằm nửa mặt phẳng có bờ chứa tia Ox 0 · · Mà AOx BOx (vì 38 112 ) nên tia OA nằm hai tia OB Ox b) Do OA nằm hai tia OB Ox nên ta có: ·AOx ·AOB BOx · 380 ·AOB 1120 ·AOB 740 1 AOB 740 37 2 c) Do OM phân giác góc AOB nên: Do tia OA nằm hai tia OB Ox; tia Om nằm hai tia OA OB (OM · tia phân giác AOB ) nên tia OA nằm hai tia OM Ox · MOx ·AOM ·AOx 370 380 750 d) Có OA OB nằm nửa mặt phẳng bờ chứa tia Ox nên để tia OA nằm hai tia OB Ox · · Thật vậy, AOx BOx tia OB nằm hai tia OA Ox · · Nếu AOx BOx tia OB trùng với tia OA Với ta có: AOM ·AOx ·AOB BOx · ·AOB 1· AOB 2 1 · MOx ·AOM ·AOx 2 Vậy ·AOB ·AOM Câu Ta có 100 số đem chia cho số dư nhận nhiều giá trị khác Vì 100 7.14 nên theo nguyên lý Dirichle ta tìm 15 số mà chia cho có số dư Vậy hiệu hai số tùy ý 15 số chia hết cho