Chng VI M¾t vµ c¸c dông cô quang häc CHUYÊN ĐỀ HIỆN TƯỢNG CẢM ỨNG ĐIỆN TỪ A LÍ THUYẾT VỀ HIỆN TƯỢNG CẢM ỨNG ĐIỆN TỪ I Từ thông qua diện tích S đặt trong một từ trường đều + Từ thông qua một mạch điện.
CHUYÊN ĐỀ: HIỆN TƯỢNG CẢM ỨNG ĐIỆN TỪ A LÍ THUYẾT VỀ HIỆN TƯỢNG CẢM ỨNG ĐIỆN TỪ I Từ thơng qua diện tích S đặt từ trường + Từ thơng qua mạch điện kín có diện tích S, đặt từ trường có vectơ cảm ứng từ B xác định theo công thức: Φ = BScos α ; Trong α = ( n ; B ) (Chiều n tuỳ thuộc vào chiều (+) mà ta chọn cho khung dây kín) II Hiện tượng cảm ứng điện từ: + Khi từ thơng qua khung dây kín biến thiên ktg từ thơng biến thiên khung xuất dịng điện cảm ứng + Khi đoạn dây dẫn chuyển động cắt đường cảm ứng đoạn dây xuất suất điện động cảm ứng III Định luật Lenxơ chiều dòng cảm ứng + Dòng cảm ứng có chiều chống lại nguyên nhân sinh + Dịng cảm ứng có chiều cho từ trường mà sinh chống lại biến thiên từ thơng sinh Khi Bm tăng Bm Bc ngược chiều Khi Bm giảm Bm Bc chiều IV Suất điện động cảm ứng: * Định luật Farađây cảm ứng điện từ: Độ lớn suất điện động cảm ứng xuất mạch kín tỉ lệ với tốc độ biến thiên từ thông qua mạch ec = -N ∆Φ ∆t (N số vòng dây khung) * Suất điện động cảm ứng xuất đoạn dây dẫn chuyển động từ trường ec = Blvsin α + v B vng góc với đoạn dây v tạo với B góc α + Chiều sđđ (từ cực (-) sang cực (+) tuân theo qui tắc BTP theo định luật Lenxơ Qui tắc BTP: Xoè bàn tay phải hứng đường cảm ứng, ngón tai chỗi 90 chiều v chiều từ cổ tay đến ngón cịn lại chiều từ cực (-) sang cực (+) nguồn cảm ứng V Suất điện động tự cảm: Φ = Li Từ thông tự cảm: ( L = k.2 π n2V) Suất điện động tự cảm: Năng lượng từ: etc = -L W = LI2 ∆I ∆t B 2V suy cuộn dây: W = 4π k Mật độ lượng từ: ω = B 4π k VI Công lực từ tác dụng lên mạch điện kín chuyển động từ trường Khi mạch điện chuyển động từ trường cơng lực từ tác dụng lên mạch điện đo tích cường độ dịng điện với độ biến thiên từ thơng qua mạch q trình chuyển động ∆A = I ∆Φ Ta có: F=BIl F tạo với dịch chuyển ∆x góc góc α vectơ pháp tuyến khung tạo với vectơ từ cảm B ∆A = F ∆x cos α = I ∆Φ Suy công lực từ : B MỘT SỐ BÀI TẬP VỀ HIỆN TƯỢNG CẢM ỨNG ĐIỆN TỪ Bài 1: Một dòng điện chạy dây dẫn thẳng dài qua hai cạnh hình vng ABCD, có cường độ dịng điện i cho biểu thức i = 4,5.t – 10.t; i tính A t tính s Cho a = 12 cm; b = 16 cm (hình vẽ) (Giữa dây dẫn thẳng dài hình vng có cách điện) a.Tính suất điện động khung dây dẫn hình vng ABCD thời điểm t = s b Xác định chiều dòng điện cảm ứng khung thời điểm t=3s A i b a D Lời giải a Từ trờng B dòng điện i gây có phơng vuông phẳng chứa khung dây ABCD, cã chiỊu A ®i tõ sau tríc víi vùng phía dòng điện có chiều từ tríc sau ®èi víi vïng M ë phÝa dới dòng điện A Xét hình chữ nhật ABNM đối xứng với a hình chữ nhật ABNM qua MN Vì lý đối xứng nên từ thông gửi qua ABNM D nhng trái dấu với từ thông gửi qua ABNM, nên từ thông gửi qua hình chữ nhật ABCD từ thông gửi qua hình chữ bằng: a a i dr ib µ bi a Φ = ∫ BdS = ∫ bBdr = ∫ b = ln r = ln Thay i = b−a 2π r 2π 2π b−a ba vào biểu thức từ thông ta đợc àb a Φ = (ln )(4,5.t − 10.t ) ba Suất điện động cảm ứng khung thời điểm t B C b góc với mỈt B N i b B ’ b C nhËt A’B’CD 4,5.t2 – 10.t ξ =− µb dΦ a = − (ln )(9t − 10) dt 2π b−a −6 Tại thời điểm t = s suất điện ®éng cã ®é lín ξ = 0,598.10 V b T¹i thời điểm t = s dòng điện i qua dây dẫn MN tăng theo thời gian t tức B tăng Theo định luật Len-xơ dòng điện cảm ứng ic khung dây ABCD phải có chiều cho chống lại tăng B khung ABCD, nghĩa phải sinh từ trờng cảm ứng Bc có chiều ngợc với B Vậy ic phải có chiều ngợc chiều quay kim đồng hồ thời điểm Bi 2: Một khung dây dẫn OABC nằm mặt phẳng Oxy có cạnh b=2cm Từ trường B vng góc với mặt phẳng Oxy có chiều hướng từ ngồi có độ lớn cho cơng thức B = 4t 2y Trong B tính T, tính tính s y tính m a Xác định suất điện động cảm ứng khung dây thời điểm t = 2,5 s b Xác định chiều dòng cảm ứng chạy khung y dây thời im t=2,5s Lời giải a Từ thông gửi qua bề mặt bao khung dây hình chữ nhật có cạnh b = cm có chiều cao dy lµ: dS = b.dy B = 4t2y B A x C O dΦ = BdS = Bbdy = 4t bydy Vì B = 4t2y hàm hai biến t y Ta lấy tích phân theo biÕn y b y2 Φ = ∫ 4t bydy = 4t b ∫ ydy = 4t b( ) 2 b = 2b 3t 2 SuÊt điện động cảm ứng khung dây là: = d = 4b 3t dt Tại thời điểm t = 2,5 s, suất điện động có độ lớn = 80.10-6 V b Khi t = 2,5 s B = 4yt đồng biến với t Vậy Bc cã chiỊu ngỵc chiỊu víi chiỊu cđa B Nên dòng điện cảm ứng có chiều theo chiỊu quay cđa kim ®ång hå Bài 3: Một khung dây hình chữ nhật, có chiều dài a, chiều rộng b, điện trở R đặt gần sợi dây dài vơ hạn mang dịng điện i nh hình vẽ bên Khoảng cách từ sợi dây dài đến tâm khung dây r Hãy tính v a b r i a Độ lớn từ thông gửi qua khung dây b Dòng điện cảm ứng khung dây khung dây chuyển động xa sợi dây dài với tốc độ v Lêi gi¶i a Tõ trờng B gây dòng điện thẳng i khoảng cách r là: B= 0i 2r Từ thông gửi qua khung dây là: ài d = BdS = a dr 2π r µi Φ = ∫ BdS = ∫∫ drdx = ∫ dx 2π r a r+ b µ0i dr µ 0i = a ∫b 2π r 2π ln r r− r+ r− b = b µ0ia 2r + b ln( ) 2π 2r − b b St ®iƯn động cảm ứng khung dây chuyển động xa so với dây với tốc độ v =− µ iav µ abvi dΦ dΦ dr dΦ 2 =− = −v =− ( − )= dt dr dt dr 2π 2r + b 2r − b π (4r − b ) Cêng độ dòng điện cảm ứng ic qua khung dây lµ: µ abvi ξ ic = = R πR(4r − b ) Bài 4: Trong mặt phẳng nằm ngang với dòng điện thẳng dài vơ hạn có cường độ I = 20A người ta đặt hai trượt kim loại song song với dòng điện gần cách dòng điện khoảng x = 1cm Hai trượt cách l = 2cm Trên hai trượt người ta lồng vào I đoạn dây dẫn MN dài l Cho dây dẫn trượt tịnh x0 tiến với vận tốc không đổi v = M P 3m/s theo hướng song song với trượt a Tìm hiệu điện xuất hai đầu dây dẫn UMN v b Nối hai đầu P, Q hai trượt với điện trở R = 0,2Ω để tạo thành mạch Q N kín Xác định độ lớn điểm đặt lực kéo tác dụng lên MN để chuyển động tịnh tiến Bỏ qua ma sát I Lêi gi¶i ur Dịng I sinh từ trường có cảm ứng từ B hình vẽ P X X0 M d x l Q N vt + B Vì đoạn dây MN chuyển động từ trường nên xuất suất điện động cảm ứng.Sau thời gian t kể từ lúc bắt đầu chuyển động,từ thông quét đoạn dài dx dây (cách dịng I khoảng x) bàng: µ0 I vtdx 2πx dΦ = Bds = Từ thông quét đoạn dây MN bằng: x0 + l Φ= µ Ivt x + l ln 2π x0 ∫ dφ = x0 Suất điện động cảm ứng có độ lớn: εc = /Φ’/ = µ Iv x + l ln 2π x Và cực nguồn có dấu: N âm, M dương Mạch hở UMN = εc = x +l µ Iv x0 + l =2.10-7Iv ln ln 2π x0 x0 Thay số UMN = 1,32.10-5 (V) Mạch kín Dịng điện qua đoạn dây MN có cường độ : Ic = εc / R = 6,6.10-5 (A) *Lực từ tác dụng lên đoạn dài dx dây dẫn MN : dF = BIcdx = µ0 I Icdx 2πx X +l Các dF hướng => F = ∫ dF = X0 µ0 I X +l I c ln 2π X0 x0 + l = 2,9.10-10 (N) x Hay F = 2.10-7I.Ic ln Chọn trục quay vị trí X = F.XG = tổng mơmen dF = momen lực từ tác dụng lên dM = xdF Xác định điểm đặt F Giả sử G điểm đặt F GM = XG.F X +l µ I XGF = ∫ XdF = Icl 2π X0 l => XG = ln X + l = 1,82 (cm) X0 Suy G cách đầu M khoảng 0,82 cm Vậy lực kéo F ' cân với lực từ F F’= 2,9.10-10N đặt G Bài 5: Một sợi dây tiết diện ngang 1,2 mm2 điện trở suất 1,7.10-8 m đợc uốn thành cung tròn có tâm O, bán kính r = 24 cm nh hình vẽ bên Một đoạn dây thẳng khác OP loại nh , quay quanh điểm P O trợt có tiếp xúc với cung tròn P Sau cùng, đoạn dây thẳng khác OQ loại trên, hợp với hai đoạn dây thành mạch điện kín Toàn Q O hệ nói đặt tõ trêng B = 0,15 T, híng tõ vuông góc với cung tròn Đoạn dây thẳng OP đầu nằm yên vị trí = vµ nhËn mét gia tèc gãc γ b»ng 12 rad/s2 a Tính điện trở mạch kín OPQO theo b Tính từ thông qua mạch theo c Với giá trị dòng điện cảm ứng mạch đạt cực đại d Tính giá trị dòng điện cảm ứng cực đại mạch Lời giải a §é dµi cđa cung PQ lµ: PQ = rθ Trong tính rad Độ dài mạch kín OPQO lµ: l = OP + OQ + PQ = r + r + rθ = (2 + θ)r VËy điện trở mạch kính OPQO là: l (2 + )r R= = S S Thay số ta đợc R = 3,4.10-3(2 + θ) (Ω) = 3,4 (2 + ) m b Từ thông qua mạch kín OPQO là: tròn s = πR2 cung s = πR2.α/2π= R2.α/2 r 2θ (0,24) Φ = BS = B = 0,15 θ = 4,32.10 −3.θ (Wb) = 4,32.θ mW 2 c Suất điện động cảm ứng mạch kính =− dΦ dθ = −4,32.10 −3 = −4,32.10 −3 ω = −4,32.10 −3 γ t dt dt Trong ®ã ω, tơng ứng vận tốc góc gia tốc góc OP Dòng điện cảm ứng ic khung lµ: ξ 4,32.10 −3 γt 1,271γt ic = = = −3 R 3,4.10 (2 + θ ) +θ 2θ θ = γt ⇒ t = Víi Thay vào biểu thức ic ta đợc ic = 1,271 2 + Để tìm giá trị cực đại icmax ic ta phả tính Ta cã dic −θ + = dθ 2(θ + 2) dic d Khảo sát ic theo ta có bảng biến thiên dic d + - i VËy θ = rad ic đạt giá trị cực đại d Cờng độ dòng điện cảm ứng cực đại mạch Thay = rad vào biểu thức dòng điện cảm ứng ta đợc icMax = 1,271 1,271 2.12.2 θ = = 2,2 A (2 + 2) +θ Bài 6: Một khung hình vng làm dây dẫn quay quanh số cạnh gần dây dẫn thẳng dài vơ hạn có dịng điện khơng đổi I qua (hình vẽ) Trục quay song song với dây dẫn khoảng cách chúng d, chiều dài cạnh khung a Tại vị trí mặt phẳng khung tạo với mặt phẳng chứa dây dẫn trục khung góc α vơn kế giá trị tuyệt đối cực đại tức thời điện áp? Lời giải: Xét thời điểm t=0 khung dây mặt phẳng với dòng điện Tại điểm M khung cách dòng điện đoạn x, từ cảm dòng điện gây M có độ lớn bằng: BM = I V a d M O2 O1 kI x Từ thông qua diện tích (a.dx) khung là: d Φ =BM.a.dx = kIa.dx x D Xét thời điểm t=0 khung vị trí O2CDE E Tại thời điểm t, khung quay góc α = ωt vị trí O2C’D’E hình Từ thơng qua khung lúc từ thơng qua diện tích O2AFE khung α =0, với O1A= O1C’= r Xét tam giác O1C’O2: O1C’=r = d + a − 2da cos α = O1A Từ thơng qua diện tích O2AFE là: C’ O1 A d Φ = ∫ dΦ = =kIa(lnd - D’ ln r D d + a − 2da cos α ) kIa d ω.sin(ωt ) ⇒ e = -Φ ’ = d + a − 2da cos(ωt ) e’ O2 F E kIa dω [d + a − 2da cos(ωt )]2 = ( d + a ).cos ωt − 2ad e’=0 cos α = 2ad d + a2 Vậy vị trí mặt phẳng khung tạo với mặt phẳng chứa dây dẫn trục khung góc α thỏa mãn cos α = điện áp 2ad vơn kế giá trị tuyệt đối cực đại tức thời d + a2 Bài 7: Một khung dây dẫn hình vng chuyển động dọc theo trục x với vận tốc v vào bán không gian vô hạn (x>0) có từ trường khơng hướng theo trục z: Bz(x) = B0(1 + αx) với B0, α số dơng Biết hai cạnh khung song song với trục x, mặt phẳng khung ln vng góc với trục z Hỏi khung thâm nhập vào khơng gian có từ trường khoảng cách bao nhiêu, khối lượng khung m, chiều dài cạnh khung b biết vào thời điểm đường sức từ xuyên qua toàn x O mặt phẳng khung, khung toả lượng nhiệt nhiệt lượng mà khung toả A D chuyển động tiếp sau dừng hẳn Tính điện trở khung Bỏ qua hệ số tự cảm khung coi αb