1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề vào 10 chuyên môn toán 2022 2023 tỉnh quảng ngãi

7 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 308,18 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NGÃI ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2022-2023 Mơn : TỐN (HỆ CHUN) Thời gian làm : 150 phút Bài (1,5 điểm)  x x 2  x 1 x P    : x x 2 x2 x    x  với x  0, x  1, x  1) Rút gọn biểu thức  d1  : y  x  1,  d  : y   x   d3  : y  mx  m  m 2) Tìm để ba đường thẳng đồng quy Bài 2.(1,5 điểm) Chứng minh n  2n  n  2n chia hết cho 24 với số nguyên n 2 Tìm tất số nguyên dương n cho 25n  10n  48 tích hai số nguyên dương chẵn liên tiếp Bài (2,5 điểm)  x  x  xy  y   Giải hệ phương trình  x  y  xy  x   m  1 x  m    m Cho phương trình tham số) Tìm m để phương x12  2mx1  m   x22  2mx2  m    x , x trình có hai nghiệm phân biệt thỏa mãn 2 2 a , b , c , d Cho bốn số thực thỏa mãn a  b  c  d  10 a  b  c  d  28 Tìm giá trị lớn biểu thức T  ab  ac  ad Bài (3,5 điểm) Cho đường trịn tâm O, bán kính R hai điểm B, C cố định » (O), BC  R Điểm A thay đổi cung lớn BC (O) cho AB  AC Đường thẳng qua B vng góc với AC K cắt đường tròn  O  cho AB  AC Đường thẳng qua B vng góc với AC K cắt đường tròn (O) P (P khác B) Kẻ PQ vng góc với đường thẳng BC Q Tia phân giác BAC cắt O cạnh BC D Tiếp tuyến A   đường thẳng BC M MB  DB    a) Chứng minh ABK  KQP MC  DC  b) Khi A đối xứng với C qua O, tính diện tích tứ giác AMDO theo R c) Tia AD cắt đường tròn (O) E (khác A) Lấy điểm I đoạn thẳng AE cho EI  EB Đường thẳng BI cắt đường tròn   L (khác B) Qua B kẻ đường thẳng vng góc với LE cắt đường thẳng LC F Xác định vị trí điểm A để độ dài BF lớn Bài (1,0 điểm) Một số nguyên dương gọi “ số đặc biệt” thỏa mãn đồng thời điều kiện sau i) Các chữ số khác O ii) Số chia hết cho 12, đổi chỗ chữ số cách tùy ý, ta thu số chia hết cho 12 a) Chứng tỏ số đặc biệt chứa chữ số b) Có tất “số đặc biệt” có chữ số ĐÁP ÁN Bài (1,5 điểm)  x x 2  x 1 x P     : x  x  x  x  x   3) Rút gọn biểu thức với x  0, x  1, x   x x 2  x 1 x P     :  x x 2 x2 x  x 2    x  2 x x    x 2 x2 x  x x 2 x    x  x 2 x2 x x 2  x 1   x 1 x 2   x 2 x 1  x 2 x 1 1 x d : y  x  1,  d  : y   x  d : y  mx  m  4) Tìm m để ba đường thẳng     đồng quy d d Xét phương trình hồnh độ giao điểm     ta có : 2x 1  x   x   y  d , d , d d 2;5 Để       đồng quy   : y  mx  m  phải qua điểm   :  2m  m   m  Vậy m  thỏa đề Bài 2.(1,5 điểm) Chứng minh n  2n  n  2n chia hết cho 24 với số nguyên n Ta có : n  2n3  n  2n   n3  n   n     n  1 n  n  1  n       tích số nguyên liên tiếp nên chia hết cho Ta thấy  Đồng thời, số liên tiếp có số chia hết tích chia hết cho n 1 n n 1 n  Mà   nên tích ln chia hết cho 24 (đpcm) 2 Tìm tất số nguyên dương n cho 25n  10n  48 tích hai số nguyên dương chẵn liên tiếp  Gọi hai số chẵn liên tiếp 2k 2k  với k  ¢ Theo đề ta có phương trình sau : 3,8  25n  10n  48  2k  2k    5n  5n    48  4k  k  1 k k  1 Vì  tích hai số nguyên liên tiếp nên k  k  1 M2  4k  k  1 M  5n  5n    48M8 5n 5n   M8 mà 48M8 nên ta có  mà 5n 5n+2 cách đơn vị nên chẵn lẻ nên để chia hết cho chẵn Do 5n chẵn hay n chẵn Đặt n  2m  m  ¢   Từ ta có   tương đương với 10m  10m    48  4k  k  1  5m  5m  1  12  k  k  1  25m  5m  12  k  k   5m  k   5m  k    5m  k   12    5m  k   5m  k  1  12 Vì 5m  k  5m  k  nên ta có trường hợp sau :  5m  k  4 m   (ktm) 1)   5m  k   k    m   (ktm)  5m  k  2  10 2)   5m  k   k   5m  k  1  m  1(tm) 3)   5m  k   12 k  Trong trường hợp, có trường hợp (3) thỏa mãn, n  2m  2.1  Vậy n  Bài (2,5 điểm) Giải hệ phương trình  x  x  xy  y    x  y  xy   x  x  xy  y   1   2  x  y  xy  Xét phương trình (1) ta thấy : x  x  xy  y    x  y   x     x  y  1  x  y  2x  x2      x  y    x    y  y   y  Vậy hệ có nghiệm  x; y      Cho phương trình   6;1  ;  6;1  ;  2;7  x   m  1 x  m    m  tham số) Tìm m để phương trình có hai nghiệm phân biệt x1 , x2 thỏa mãn x  2mx1  m   x22  2mx2  m   Ta có : x   m  1 x  m    1 Để phương trình có hai nghiệm phân biệt x1 , x2  '  2m    m    x1  x2   m  1  Theo hệ thức Vi-et ta có :  x1 x2  m  Vì x1 , x2 hai nghiệm phương trình nên ta có : 2  x12   m  1 x1  m    x1  2mx1  m   x1    2  x2  2mx2  m   x2  x2   m  1 x2  m   Theo đề bài, ta có : x  2mx1  m   x22  2mx2  m2      x1    x2      x1  x2   x1 x2   m  1(tm)   12(m  1)   m     m2  3m      m  2(ktm) Vậy m  2 2 Cho bốn số thực a, b, c, d thỏa mãn a  b  c  d  10 a  b  c  d  28 Tìm giá trị lớn biểu thức T  ab  ac  ad 2 Xét b  c  d , áp dụng bđt Cauchy-Schwartz ta : bcd   b2  c2  d  Dấu xảy b  c  d   10  a    28  a   a  5a    a  1  a    1 a  Mặt khác, ta thấy : T  ab  ac  ad  a  b  c  d   a  10  a   10a  a   10a  a  24   24   a     a   24       1  24  24 Dấu xảy a  Vậy Tmax  24 a  4, b  c  d  Bài (3,5 điểm) Cho đường trịn tâm O, bán kính R hai điểm B, C cố định » (O), BC  R Điểm A thay đổi cung lớn BC (O) cho AB  AC Đường thẳng qua B vng góc với AC K cắt đường tròn   cho AB  AC Đường thẳng qua B vng góc với AC K cắt đường tròn (O) P (P khác B) Kẻ PQ vng góc với đường thẳng BC Q Tia phân giác O O BAC cắt cạnh BC D Tiếp tuyến A   đường thẳng BC M MB  DB     ABK   KQP MC  DC  d) Chứng minh PK  KC  gt  PQ  QC PQCK Ta có nên tứ giác  KQP  PCK (cùng chắn cung PK )  1 nội tiếp O; R  AP)   Ta thấy tứ giác ABCP nội tiếp  nên ABP  ACP (cùng chắn cung Từ (1) (2) suy KQP  ABK   PCK   dfcm  Dễ chứng minh MAB ∽ MCA  g g  nên ta có : MA AB MA2 AB MB.MC DB MB  DB          2 2 MC AC MC AC MC DC MC  DC  MB  DB     dfcm  MC DC   Vậy e) Khi A đối xứng với C qua O, tính diện tích tứ giác AMDO theo R Khi A đối xứng với C qua O AC đường kính (O), AC  R , AO  OC  CB  R, ACB vuông B nên AB  AC  CB  R  R  R (định lý Pytago) Đồng thời AC  R  BC  ACB  60  ACB  MAB  60 (cùng phụ với BAC ) Ta có : AB DB AB  AC BC    AC DC AC DC R  R BC DC        DC  R  2R DC BC 32 COD  N  OC   Gọi DN đường cao  Ta có : AB.MB S AMDO  S AMB  S ABDO   S ABC  SODC AB tan MAB AB.BC DN OC 3R tan 60 R sin DCN DC.R       2 2 2   3R R sin 60.R  R      R 2 2 33 S AMDO  R Vậy f) Tia AD cắt đường tròn (O) E (khác A) Lấy điểm I đoạn thẳng AE cho EI  EB Đường thẳng BI cắt đường tròn  O  L (khác B) Qua B kẻ đường thẳng vng góc với LE cắt đường thẳng LC F Xác định vị trí điểm A để độ dài BF lớn   Ta có Xét (O): BAE  BLE (hai góc nội tiếp chắn cung EB, EAC  ELC (hai góc nội tiếp chắn cung EC) mà BAE  EAC (AE phân giác BAC ) LE  BF ( gt ) * BLF  ** Nên BLE  ELC EB=EC    LE phân giác BF  EB  EF   Từ (*) (**) suy LE đường trung trực E ; EB  Từ (1) (2) gt  EB  EI  EC  EF  B, I , C , F nội tiếp  BF dây E ; EB  cung  E ; EB  Do để BFmax  BF đường kính  , xảy BP đường AKB  90  gt  OB  AC  3 kính (O;R) Khi K  OB mà nên Xét (O;R) ta thấy AC dây cung không qua O, nên K trung điểm AC   Từ (3) (4) suy B điểm nằm cung AC hay AB  BC Vậy với AB  BC hay điểm B nằm cung AC độ dài BF đạt giá trị lớn Bài (1,0 điểm) Một số nguyên dương gọi “ số đặc biệt” thỏa mãn đồng thời điều kiện sau iii) Các chữ số khác iv) Số chia hết cho 12, đổi chỗ chữ số cách tùy ý, ta thu số chia hết cho 12 c) Chứng tỏ số đặc biệt chứa chữ số Vì số đặc biệt nên chia hết cho Ta thấy để số đổi chữ số cho mà chia hết cho chữ số số chẵn, mà số đặc biệt số có chữ số khác nên chữ số 2;4;6;8 (1) Từ số 2;4;6;8, ta lập số có chữ số cho đổi chỗ chữ số cho chúng chia hết cho 4, ta thấy lập số thỏa mãn điều kiện 48 (2) Từ (1) (2) suy lập “số đặc biệt” từ số (đpcm) d) Có tất “số đặc biệt” có chữ số Ta thấy “số đặc biệt” chứa số nên ta đặt x số chữ số y số chữ  số để tạo nên “số đặc biệt” có chữ số ( x, y  ¢ ,1  x, y  4) Đồng thời, ta suy phương trình nghiệm nguyên x  y  x; y 1; , 2;3 , 3; Cũng từ phương trình , ta tìm cặp số nguyên         ,  4;1 Vì “số đặc biệt” chia hết tổng chữ số chúng chia hết | x  y   |  3x  y    x  y  cho hay  3x  y  M3   x  y  M3   x; y     1;  ;  4;1  Mà  th1: x  1, y   Các số : 48888;84888;88488;88848;88884 (5 số) Th2: x=4, y=1 số 44448; 44484; 44844; 48444;84444 (5 số) Vậy ta tìm 10 “số đặc biệt” có chữ số ... 2;5 Để       đồng quy   : y  mx  m  phải qua điểm   :  2m  m   m  Vậy m  thỏa đề Bài 2.(1,5 điểm) Chứng minh n  2n  n  2n chia hết cho 24 với số nguyên n Ta có : n  2n3 ... 48 tích hai số nguyên dương chẵn liên tiếp  Gọi hai số chẵn liên tiếp 2k 2k  với k  ¢ Theo đề ta có phương trình sau : 3,8  25n  10n  48  2k  2k    5n  5n    48  4k  k  1... m    x1  2mx1  m   x1    2  x2  2mx2  m   x2  x2   m  1 x2  m   Theo đề bài, ta có : x  2mx1  m   x22  2mx2  m2      x1    x2      x1  x2   x1

Ngày đăng: 10/10/2022, 00:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w