1. Trang chủ
  2. » Giáo Dục - Đào Tạo

de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4

24 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,57 MB

Nội dung

thuvienhoclieu.com ĐỀ ÔN THI TỐT NGHIỆP THPT NĂM 2022 MÔN TỐN Thời gian: 90 phút Trong hình vẽ bên, điểm M biểu diễn số phức z Số phức z là: ĐỀ BÁM SÁT ĐỀ MINH HỌA Câu 1: A  2i B  i C  2i S : x  1   y     z    Tâm I bán kính R mặt cầu    là: I  1; 2;3  ; R  I  1; 2; 3 ; R  I  1; 2;3 ; R  I  1; 2; 3 ; R  A B C D Điểm không thuộc đồ thị hàm số y  x  x  2 Câu 2: Câu 3: A Điểm P (1; 2) Câu 4: B Điểm N (0; 2) Bán kính R khối cầu tích V 2 C Điểm M (1; 2) D Điểm Q(1;0) 32 a 3 là: B R  2a A R  2a Câu 5: D  i C sin xdx Nguyên hàm  bằng:  cos x  C A B cos 2x  C 2a cos x  C C D 7a D  cos 2x  C f ( x)  x  x   , x  ¡ Cho hàm số f ( x) có đạo hàm Số điểm cực trị hàm số cho A B C D Câu 6: x2  Câu 7: Câu 8: 3   1 Giải bất phương trình   ta tập nghiệm T Tìm T T   2; 2 T   2;   A B T   ; 2 T   ; 2   2;   C D Cho hình chóp S ABC có đáy tam giác cạnh a , cạnh bên SB vuông góc với mặt phẳng  ABC  , SB  2a Tính thể tích khối chóp S ABC a3 A 3a C a3 B y   x  1 12 Tìm tập xác định D hàm số D  ¡ \  1 D  ¡ \  1 D   1,1 A B C log  x  1  Câu 10: Nghiệm phương trình A x  66 B x  63 C x  68 Câu 9: Câu 11: Cho hàm số f  x liên tục ¡ có a3 D thuvienhoclieu.com D   ;1   1;   D x  65 3  f  x  dx   f  x  dx  D ; Tính I   f  x  dx Trang A I  thuvienhoclieu.com I  12 B C I  36 D I  Câu 12: Trong hình vẽ bên, điểm M biểu diễn số phức z Khi số phức w  2 z A w   2i B w   2i C w  4  2i D w  4  2i    : x  y  z   Khi đó, véctơ pháp tuyến    ? Câu 13: Cho mặt phẳng r r r r n   2;3;1 n   2;3; 4  n   2; 3;  n   2;3;  A B C D r r r r r b 2; 3;   Câu 14: Trong không gian với hệ tọa độ Oxyz cho a  2i  j  k ,  Tìm tọa độ r r r x  2a  3b r r r r x   2;  1; 19  x   2; 3; 19  x   2;  3; 19  x   2;  1; 19  A B C D Câu 15: Điểm M hình vẽ bên biểu diễn số phức z Phần ảo z C 5 x2  5x  y x  x  bằng: Câu 16: Số tiệm cận đứng đồ thị hàm số A B C A B 3 D D 3 log    a  bằng: Câu 17: Với a số thực dương tùy ý, 1  log a  log a A B C log a Câu 18: Đường cong hình đồ thị hàm số sau đây? thuvienhoclieu.com D  log a Trang thuvienhoclieu.com x 1 y x 1 B C y   x  x  D y  x  x  x  y 1 z  d:   1 Vectơ Câu 19: Trong không gian Oxyz , cho đường thẳng vectơ phương d ? r r r r u  (1; 2; 3) u  (1; 2;1) u  (2;1; 3) u  (2;1;1) A B C D Câu 20: Một người vào cửa hàng ăn, người chọn thực đơn gồm ăn món, loại loại, loại nước uống loại Hỏi có cách lập thực đơn? A 73 B 75 C 85 D 95 x 1 y x 1 A Câu 21: Cho hình lăng trụ đứng có diện tích đáy khối lăng trụ là: 6a B 3a x Câu 22: Tính đạo hàm hàm số y  17 x  x 1 A y  17 ln17 B y   x.17 A Câu 23: Cho hàm số y  f  x 3a Độ dài cạnh bên a Khi thể tích C 2a D x C y  17 6a 3 x D y  17 ln17 có bảng biến thiên sau y  f  x Hàm số đồng biến khoảng đây?  ; 1  1;    0;1  1;0  A B C D Câu 24: Cho hình trụ có chiều cao 2a , bán kính đáy a Tính diện tích xung quanh hình trụ 2 2 A  a B 2a C 2 a D 4 a Câu 25: Cho hàm số y  f  x  1; liên tục   thỏa mãn biểu thức I A A 12 2,  f  x  dx  Tính giá trị 3 I   f  x  dx   f  x  dx Câu 26: Cho cấp số cộng f  x  dx  B  un  I với số hạng đầu B Câu 27: Tìm họ nguyên hàm hàm số x 3x   ln x  C , C  R A ln C u1  y  x  3x  I D I công sai d  Hỏi số 34 số hạng thứ mấy? C 11 D 10 x x 3x   ln x  C, C  R B ln thuvienhoclieu.com Trang thuvienhoclieu.com x 3x    C, C  R D ln x x  3x   C , C  R x C Câu 28: Cho hàm số y  f  x có đồ thị hình bên Giá trị cực đại hàm số B y  1 C y  3 D y   3; 2 , hàm số f  x   x  10 x  đạt giá trị nhỏ điểm Câu 29: Trên đoạn A y  A x  B x  3 Câu 30: Hàm số sau đồng biến ¡ ? C x  y D x   x 1 x 1 B y  x  x  x C D y  x x  log ( ab )  4a Giá trị ab Câu 31: Cho a b hai số thực dương thỏa mãn A B C D A y  x  x  x 4 Câu 32: Cho hình chóp S ABCD có tất cạnh a Gọi I J trung điểm SC BC Số đo góc  IJ , CD  A 30 B 60  Câu 33: Cho A f  x  dx  C 45 D 90   f  x   3x  dx tích phân B C D 1 x 1 y  z :   1 3 mặt phẳng Câu 34: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  P  : x  y  z   Phương trình mặt phẳng    qua O , song song với  vng góc với P mặt phẳng   A x  y  z  B x  y  z  C x  y  z   D z   2i    3i Câu 35: Cho số phức z thỏa mãn Phần ảo số phức liên hợp z 2 11  A B C D thuvienhoclieu.com x  2y  z   z 11  Trang thuvienhoclieu.com Câu 36: Cho hình chóp S ABC có M , SA  a ABC vuông B có cạnh BC  a , AC  a Tính  SBC  theo a khoảng cách từ A đến 2a 21 A a 21 B a 15 D C a Câu 37: Gọi S tập hợp tất số tự nhiên có chữ số đơi khác chữ số thuộc tập  1, 2, 3, 4, 5, 6, 7, 8, 9 Chọn ngẫu nhiên số thuộc S , xác suất để số khơng có hai hợp chữ số liên tiếp lẻ 31 17 41 A 42 B 126 C 126 D 21 M  1; 2;3 P : x  y  3z   Câu 38: Trong không gian Oxyz , cho điểm mặt phẳng   Phương P trình đường thẳng qua M vng góc với   A  x   2t   y  2  t  z   3t  x Câu 39: Bất phương trình A B  x  1  2t  y  t  z  3  3t   x  ln  x    C x   t   y  1  2t  z   3t  D  x   2t   y  2  t  z   3t  có nghiệm nguyên? C D Vô số B Câu 40: Biết đồ thị hàm số y = f ( x) cho hình vẽ sau Số giao điểm đồ thị hàm số ¢ ù ¢¢ y =é ëf ( x ) û - f ( x ) f ( x ) trục Ox là: B A C Câu 41: Cho hàm số D f  x có f   x   sin x.sin x, x  ¡   f   2 Biết F  x nguyên hàm f  x thỏa mãn F  0  ,   F    104 A 225 167 B D 225 Câu 42: Cho hình chóp S ABC có đáy tam giác ABC vuông C , AB  2a , AC  a SA vng góc với mặt phẳng  104 225 121 C 225  ABC  Biết góc hai mặt phẳng  SAB   SBC  60 Tính thể tích khối chóp S ABC a3 A a3 B 12 a3 C thuvienhoclieu.com a3 D Trang thuvienhoclieu.com 2 Câu 43: Trên tập hợp số phức, xét phương trình z  4az  b   0, ( a, b tham số thực) Có cặp số thực z1  2iz2   3i ?  a; b  cho phương trình có hai nghiệm z1 , z2 thỏa mãn A B C D x   t  d1  :  y   t x y 7 z   d2  :   z  1 t  3 1 Đường thẳng    đường vuông Câu 44: Cho hai đường thẳng d d  góc chung     Phương trình sau đâu phương trình   x  y 1 z  x  y 1 z 1     2 2 A B x 1 y  z    2 C x 3 y  z 3   1 2 D  x  1  2mt    :  y    m2  1 t   z    m  t Oxyz Câu 45: Trong không gian , cho đường thẳng Gọi  đường thẳng qua gốc tọa độ O song song với  Gọi A, B, C điểm di động Oz, ,  Giá trị nhỏ AB  BC  CA A 2 Câu 46: Cho hàm số C B f  x D nhận giá trị dương có đạo hàm liên tục  f  x   0;3 thoả mãn  f  x   dx  f    3, f  3  f Giá trị   64 A 55 B 16 19 C D y  f  x f  2   3, f    Câu 47: Cho hàm số thỏa mãn bảng xét dâú đạo hàm sau:    f  x    4m x   2;  Bất phương trình nghiệm với số thực m   2;  1 m   2;  1 m   2;3 m   2;3 A B C D y  f  x Câu 48: Cho hàm số có bảng xét dấu đạo hàm sau f x m thuvienhoclieu.com Trang thuvienhoclieu.com f    f  3  f    f   y  f  x Biết Giá trị nhỏ nhất, giá trị lớn hàm đoạn A  0;5 f   , f  5 f  2 , f  0 f  1 , f   f  5 , f   B C D P :y x C P Câu 49: Cho parabol   đường trịn   có tâm thuộc trục tung, bán kính tiếp xúc với   hai điểm phân biệt Diện tích hình phẳng giới hạn bên) 14  3  2 12 A 2  3  12 B Câu 50: Có cặp số nguyên dương điểm phân biệt A B  a; b   P  C (phần bôi đậm hình vẽ 4  3 12 C  4 12 D để đồ thị hàm số y  x  ax  x  b cắt trục hoành C D Vô số HẾT 1.D 11.A 21.A 31.D 41.B 2.C 12.D 22.D 32.B 42.B 3.C 13.D 23.D 33.A 43.D 4.A 14.C 24.D 34.A 44.A ĐÁP ÁN 5.A 6.B 15.D 16.B 25.B 26.A 35.C 36.A 45.D 46.B 7.A 17.A 27.B 37.A 47.B 8.B 18.B 28.D 38.A 48.D 9.A 19.B 29.D 39.C 49.D 10.D 20.B 30.D 40.D 50.C HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Trong hình vẽ bên, điểm M biểu diễn số phức z Số phức z là: A  2i Điểm M  2;1 B  i C  2i Lời giải D  i hệ tọa độ vng góc cuả mặt phẳng gọi điểm biểu diễn số phức z   i suy z   i S : x  1   y     z  3  Câu 2: Tâm I bán kính R mặt cầu    là: thuvienhoclieu.com 2 Trang A I  1; 2;3 ; R  thuvienhoclieu.com I  1; 2; 3 ; R  I  1; 2;3 ; R  B C Lời giải D I  1; 2; 3 ; R  Chọn C Câu 3: Điểm không thuộc đồ thị hàm số y  x  x  A Điểm P (1; 2) B Điểm N (0; 2) C Điểm M (1; 2) D Điểm Q(1;0) Câu 4: Bán kính R khối cầu tích A R  2a B R  2a V 32 a 3 là: C 2a Lời giải D 7a Chọn A Thể tích khối cầu V Câu 5: Nguyên hàm   cos x  C A 32 a 32 a3   R3  3  R  2a sin xdx bằng: B cos 2x  C cos x  C C Lời giải D  cos 2x  C Chọn A 1   sin xd2x   cos x  C sin x d x 2 Ta có  f ( x)  x  x   , x  ¡ Câu 6: Cho hàm số f ( x ) có đạo hàm Số điểm cực trị hàm số cho A B C D Lời giải Chọn B Bảng biến thiên Từ bảng biến thiên ta thấy hàm số cho có điểm cực trị điểm cực tiểu x  x2 4 3   1 Câu 7: Giải bất phương trình   ta tập nghiệm T Tìm T T   2; 2 T   2;   A B T   ; 2 T   ; 2   2;   C D Lời giải Chọn A x2 4 3   Bất phương trình     x    x   2;  thuvienhoclieu.com Trang Vậy tập nghiệm T   2; 2 thuvienhoclieu.com Câu 8: Cho hình chóp S ABC có đáy tam giác cạnh a , cạnh bên SB vng góc với mặt phẳng  ABC  , SB  2a Tính thể tích khối chóp S ABC a3 A 3a C Lời giải a3 B a3 D Chọn B a2 a3 2a  V  S ABC SB  Thể tích khối chóp S ABC là: y   x  1 12 Câu 9: Tìm tập xác định D hàm số D  ¡ \  1 D  ¡ \  1 A B D   1,1 D   ;1   1;   C D Lời giải Chọn A y   x  1 12 xác định x    x  1 D  ¡ \  1 Vậy tập xác đinh log  x  1  Câu 10: Nghiệm phương trình A x  66 B x  63 C x  68 Hàm số D x  65 Lời giải Chọn D Điều kiện: x    x  log  x  1   x   43  x  65 Câu 11: Cho hàm số f  x liên tục ¡ có  f  x  dx  ;  f  x  dx  I   f  x  dx thuvienhoclieu.com Trang Tính thuvienhoclieu.com I  12 B C I  36 Lời giải A I  D I  Chọn A 3 0 I   f  x  dx   f  x  dx   f  x  dx Trong hình vẽ bên, điểm M biểu diễn số phức z Khi số phức w  2 z Câu 12: A w   2i Điểm  26 8 M  2;1 B w   2i C w  4  2i Lời giải D w  4  2i hệ tọa độ vuông góc cuả mặt phẳng gọi điểm biểu diễn số phức z   i suy w  2 z  2   i   4  2i    : x  y  z   Khi đó, véctơ pháp tuyến    ? Câu 13: Cho mặt phẳng r r r r n   2;3;1 n   2;3; 4  n   2; 3;  n   2;3;  A B C Lời giải Chọn D    : 2x  y  4z 1  Mặt phẳng đáp án có vec tơ pháp tuyến D r n   2; 3; 4     2;3;  D nên chọn r r r r r Oxyz a  i  j  k , b  2; 3;   Tìm tọa độ Câu 14: Trong khơng gian với hệ tọa độ cho r r r x  a  3b r r r r x   2;  1; 19  x   2; 3; 19  x   2;  3; 19  x   2;  1; 19  A B C D Lời giải Chọn C r r r r r a   2; 3;  1 b   2; 3;    x  2a  3b   2;  3; 19  Ta có , Câu 15: Điểm M hình vẽ bên biểu diễn số phức z Phần ảo z A B 3 C 5 Lời giải thuvienhoclieu.com D Trang 10 thuvienhoclieu.com M  3;5   z  3  5i  Tọa độ điểm Phần ảo z x2  5x  x  x  bằng: Số tiệm cận đứng đồ thị hàm số B C D Lời giải y Câu 16: A Chọn B D  R \  1; 2 Tập xác định lim y  ; lim y   x 1 Ta có x 1 nên x  đường tiệm cận đứng đồ thị hàm số lim y  1; lim y  1 x  2 x 2 nên x  đường tiệm cận đứng đồ thị hàm số Vậy đồ thị hàm số có đường tiệm cận đứng 3 log    a  bằng: Câu 17: Với a số thực dương tùy ý, 1  log a  log a A B C log a D  log a Lời giải Chọn A 3 log    log 3  log a   log a a Ta có Câu 18: Đường cong hình đồ thị hàm số sau đây? A y x 1 x 1 B y x 1 x 1 C y   x  x  Lời giải D y  x  3x  Chọn B Căn vào đồ thị ta xác định y  Chỉ hàm số câu B thỏa mãn nên đáp án B x  y 1 z  d:   Oxyz 1 Vectơ Câu 19: Trong không gian , cho đường thẳng vectơ phương d ? r r r r u  (1; 2; 3) u  (1; 2;1) u  (2;1; 3) u  (2;1;1) A B C D Lời giải Chọn B r Một vectơ phương d là: u  (1; 2;1) thuvienhoclieu.com Trang 11 thuvienhoclieu.com Câu 20: Một người vào cửa hàng ăn, người chọn thực đơn gồm ăn món, loại loại, loại nước uống loại Hỏi có cách lập thực đơn? A 73 B 75 C 85 D 95 Lời giải Chọn B Lập thực đơn gồm hành động liên tiếp: Chọn ăn có cách Chọn có cách Chọn nước uống có cách Theo quy tắc nhân: 5.5.3  75 cách Câu 21: Cho hình lăng trụ đứng có diện tích đáy thể tích khối lăng trụ là: A 6a B 3a C 3a Độ dài cạnh bên a Khi 2a D 6a 3 Lời giải Chọn A Thể tích khối lăng trụ V  a 3.a  a x Câu 22: Tính đạo hàm hàm số y  17 x A y  17 ln17  x 1 x B y    x.17 C y  17 Lời giải x D y  17 ln17 Chọn D a    u.a  Áp dụng công thức: u Câu 23: Cho hàm số u ln a y  f  x ta có: y   17  x    17  x.ln17 có bảng biến thiên sau y  f  x Hàm số đồng biến khoảng đây?  ; 1  1;    0;1  1;0  A B C D Lời giải Chọn D  1;0  Dựa vào bảng biến thiên ta thấy hàm số đồng biến Câu 24: Cho hình trụ có chiều cao 2a , bán kính đáy a Tính diện tích xung quanh hình trụ 2 2 A  a B 2a C 2 a D 4 a Lời giải thuvienhoclieu.com Trang 12 thuvienhoclieu.com Chọn D  2h πa2 a .2 πa 4 Diện tích xung quanh: SπR Câu 25: y  f  x Cho hàm số Tính giá trị biểu thức I A liên tục  1; 4 f  x  dx  f  x  dx    2, thỏa mãn 3 I   f  x  dx   f  x  dx I B I C Lời giải D I Chọn B Tacó   f  x  dx   f  x  dx  3 3 I   f  x  dx   f  x  dx   f  x  dx   f  x  dx   f  x  dx   f  x  dx 1   4 Câu 26: Cho cấp số cộng hạng thứ mấy? A 12 B  un  với số hạng đầu u1  C 11 công sai d  Hỏi số 34 số D 10 Lời giải Chọn A u  u1   n  1 d  34    n  1   n  1  33  n   11  n  12 Ta có n y  x  3x  x Câu 27: Tìm họ nguyên hàm hàm số x 3x   ln x  C , C  R A ln x3  3x   C , C  R x C x 3x   ln x  C , C  R B ln x 3x    C, C  R D ln x Lời giải x 3x  x 1 x   d x    ln x  C , C  R    x ln  Ta có: Câu 28: Cho hàm số y  f  x có đồ thị hình bên Giá trị cực đại hàm số thuvienhoclieu.com Trang 13 thuvienhoclieu.com B y  1 A y  Chọn D Câu 29: Trên đoạn A x  C y  3 Lời giải D y   3; 2 , hàm số f  x   x  10 x  đạt giá trị nhỏ điểm D x   B x  3 C x  Lời giải f  x   x  10 x   3; 2 Hàm số xác định f   x   x3  20 x Ta có  x    3; 2  f   x     x    3; 2   x     3; 2   f  3  8; f   24; f    1; f    23  3; 2 24 x   Vậy giá trị nhỏ hàm số đoạn Câu 30: Hàm số sau đồng biến ¡ ? x 1 y 4 x 1 A y  x  x  x B y  x  x  x C D y  x x  Lời giải Chọn D Chọn đáp án D: y  x x  TXĐ: D  ¡ đồng biến ¡ y  x   x2 x2   0, x  ¡  hàm số log3 ( ab )  4a Giá trị ab Cho a b hai số thực dương thỏa mãn Câu 31: A B C Lời giải D Chọn D Ta có : 2 9log3 ( ab) = 4a Û log3 ( ab) = log3 ( 4a ) Û log ( a b ) = log ( 4a) Þ a 2b2 = 4a thuvienhoclieu.com Trang 14 thuvienhoclieu.com Û ab = Câu 32: Cho hình chóp S ABCD có tất cạnh a Gọi I J trung  IJ , CD  điểm SC BC Số đo góc A 30 B 60 C 45 D 90 Lời giải Chọn B Ta có IJ // SB (tính chất đường trung bình) CD // AB (tứ giác ABCD hình thoi) · IJ , CD    SB, AB   SBA  60 Suy  Câu 33: A Chọn Cho  f  x  dx  1   f  x   3x  dx tích phân B C Lời giải 1   f  x   3x  dx  2 f  x  dx  3 x dx    phẳng D 1 A Câu 34: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  P  : x  y  z   Phương trình mặt phẳng    P với mặt phẳng   A x  y  z  : x 1 y  z   1 3 mặt qua O , song song với  vuông góc B x  y  z  C x  y  z   D x  y  z   Lời giải r r u   1; 2;  n   1; 1;1 P      có VTCP có VTPT ur r r    qua O nhận n   u; n    1; 2;1  : x  2y  z  Suy   z   2i    3i Câu 35: Cho số phức z thỏa mãn Phần ảo số phức liên hợp z z 2 11 11   A B C D Lời giải  3i   3i    2i  2  11i 2 11  z =  =  i z   2i    3i 12  22  2i 5 Vì nên thuvienhoclieu.com Trang 15 thuvienhoclieu.com 2 11 z=  i 5 Suy 11 Vậy phần ảo z Cho hình chóp S ABC có M , SA  a ABC vng B có cạnh BC  a , Câu 36: AC  a Tính theo a khoảng cách từ A đến  SBC  2a 21 A a 21 B C a Lời giải a 15 D Chọn A Gọi D hình chiếu A lên SB SA   ABC   SA  BC Ta có:  SA  BC  BC   SAB   BC  AD   AB  BC  AD  BC  AD   SBC   d ( A,( SBC ))  AD   AD  SB 2 2 Lại có: AB  AC  BC  5a  a  2a Xét SAB vuông A có AH đường cao nên ta có: AH  SA AB SA2  AB  a 3.2a 3a  4a   SBC  Vậy khoảng cách từ A đến Câu 37: 21 a 2a 21 Gọi S tập hợp tất số tự nhiên có chữ số đôi khác chữ số  1, 2, 3, 4, 5, 6, 7, 8, 9 Chọn ngẫu nhiên số thuộc S , xác suất để số khơng thuộc tập hợp có hai chữ số liên tiếp lẻ 31 17 41 A 42 B 126 C 126 D 21 Lời giải Chọn A thuvienhoclieu.com Trang 16 thuvienhoclieu.com A  3024 Số phần tử S n     3024 Chọn ngẫu nhiên số từ tập S có 3024 (cách chọn) Suy Gọi biến cố A : “ Chọn số khơng có hai chữ số liên tiếp lẻ” Trường hợp 1: Số chọn có chữ số chẵn, có 4!  24 (số) Trường hợp 2: Số chọn có chữ số lẻ chữ số chẵn, có 5.4.4!  480 (số) 2 Trường hợp 3: Số chọn có chữ số lẻ chữ số chẵn, có A5 A4  720 (số) Do đó, n  A   24  480  720  1224 Vậy xác suất cần tìm Câu 38: Trong P  A  không n  A  1224 17   n    3024 42 gian Oxyz , cho M  1; 2;3 điểm  P  : x  y  3z   Phương trình đường thẳng qua M B  x  1  2t  y  t  z  3  3t  Đường thẳng cần tìm qua M  1; 2;3 P , vng góc với   A  x   2t   y  2  t  z   3t  x   t   y  1  2t  z   3t  C Lời giải vng góc với Chọn A phương Phương trình đường thẳng cần tìm Câu 39: A Bất phương trình B x  x   2t   y  2  t  z   3t   x  ln  x    nên nhận D mặt  P  x   2t   y  2  t  z   3t  có nghiệm nguyên? C D Vô số Lời giải Chọn C Điều kiện: x  5  x  3 x   x3  x   x  x ln x          x  ln  x      x  4 Cho Bảng xét dấu:  4  x  3 f  x    0  x  Dựa vào bảng xét dấu ta thấy x  ¢  x   4;  3;0;1; 2;3 Vì x Vậy có giá trị ngun thỏa toán thuvienhoclieu.com r n P    2; 1;3 Trang 17 phẳng véc tơ thuvienhoclieu.com Biết đồ thị hàm số y = f ( x ) cho hình vẽ sau Câu 40: Số giao điểm đồ thị hàm số A B ¢ ù ¢¢ y =é ëf ( x ) û - f ( x ) f ( x ) trục Ox là: D C Lời giải Chọn D f ( x) = a ( x - x1 ) ( x - x2 ) ( x - x3 ) ( x - x4 ) , a ¹ 0, x1 < x2 < x3 < x4 Đặt Phương trình hồnh độ giao điểm đồ thị hàm số ¢ ù ¢¢ y=é ëf ( x ) û - f ( x) f ( x ) trục Ox é ù¢ é ¢ ù¢ éf ¢( x ) ù - f ¢¢( x ) f ( x ) = Þ êf ( x) ú = Þ ê + + + ú = ë û êx - x1 x - x2 x - x3 x - x4 ú ê ëf ( x ) ú û ë û 1 1 =0 2 2 ( x - x1 ) ( x - x2 ) ( x - x3 ) ( x - x4 ) vô nghiệm Vậy số giao điểm đồ thị hàm số Câu 41: Cho hàm số nguyên hàm 104 A 225 f  x f  x thỏa mãn B  ¢ ù ¢¢ y =é ëf ( x ) û - f ( x ) f ( x ) trục Ox   f   F  x f   x   sin x.sin 2 x, x  ¡ có   Biết F  0  104 225   F  ,   121 C 225 167 D 225 Lời giải Chọn B Ta có  f   x   sin x.sin 2 x, x  ¡ nên f  x f  x nguyên hàm  cos x sin x sin x.cos x f   x  dx   sin x.sin 2 xdx   sin x dx   dx   dx 2 Có 1 1   sin xdx    sin x  sin x  dx   cos x  cos x  cos x  C 20 12   1 f    C  f  x    cos x  cos x  cos x  C , x  ¡ 20 12 Suy Mà   1 f  x    cos x  cos x  cos x, x  ¡ 20 12 Do Khi đó: thuvienhoclieu.com Trang 18 thuvienhoclieu.com   1     F   F     f  x  dx    cos x  cos 5x  cos 3x dx 20 12 2  0  1 104  2    sin x  sin x  sin x    100 36 225  0 104 104 104    F   F  0   0  225 225 225 2 Câu 42: Cho hình chóp S ABC có đáy tam giác ABC vng C , AB  2a , AC  a SA vng góc với mặt phẳng  ABC  Biết góc hai mặt phẳng  SAB   SBC  60 Tính thể tích khối chóp S ABC a3 A a3 B 12 a3 C Lời giải a3 D Chọn B  CH   SAB   CH  SB 1 Trong ABC kẻ CH  AB BC  AB  AC  a , BH BA  BC , a 3a CH  BC  BH  ,  CK  SB  Trong SAB kẻ HK  SB  1 ,    HK  SB Từ · SAB  SBC  Góc hai mặt phẳng   CKH  60 a HK  CH cot 60  , BK  BH  HK  a Trong vng CKH có  BH  thuvienhoclieu.com Trang 19 thuvienhoclieu.com SA AB 2a a    SA  SAB ∽ HKB  g g  nên HK BK a a a3  a a  V  SA.S ABC 2 12 Thể tích hình chóp S ABC Câu 43: 2 Trên tập hợp số phức, xét phương trình z  4az  b   0, ( a, b tham số thực) Có cặp số thực z1  2iz2   3i ? A  a; b  B cho phương trình có hai nghiệm C Lời giải z1 , z2 thỏa mãn D Chọn D  z1  z2  4a  z z  b2  Theo định lý Vi-ét, ta có:  z,z Theo yêu cầu toán, phương trình cho có hai nghiệm thỏa mãn z1  2iz2   3i  z1  2iz2   3i    z1  2iz2   3i   z2  2iz1   3i    3 z1 z2    2i    3i   z1  z2   18i  2i  z12  z22    3  b      9i   4a   18i  2i  z1  z2   z1 z2      3  b      9i   4a   18i  2i 16a   b     3  b    12a  2    b   4a b   4a    2 2 36a  18  32a   b      36a  18  32a  16a  32a  52a  18  b   4a      a   a   ;b  a   ; b      2    9 10  a   ; b  a    a   ; b    8    a; b  thỏa mãn tốn Vậy có cặp số thực x   t  d1  :  y   t x y7 z   d2  :   z  1 t  3 1 Đường thẳng    Câu 44: Cho hai đường thẳng đường vng góc chung x  y 1 z    2 A  d1   d  Phương trình sau đâu phương trình    x  y 1 z 1   2 B x 3 y  z 3   1 2 D x 1 y  z    2 C Lời giải Chọn A M   d1  M   t1 ;1  t1 ;1  t1  Lấy điểm : N   d  : N  t2 ;7  3t2 ; t2  thuvienhoclieu.com Trang 20 thuvienhoclieu.com uuuu r MN   t2  t1  2; 3t2  t1  6; t2  t1  1 uuuu r ur  t  t  t   MN u1    uuuu   r uu r 11t2  3t1  19 t1  1  MN u2  Đường thẳng MN đường vng góc chung uuuu r MN  1;1; 2  M  1; 0;0  , N  2;1; 2  Suy x  y 1 z     2 Phương trình đường thẳng   qua M , N là:  x  1  2mt    :  y    m  1 t   z    m  t Oxyz Câu 45: Trong không gian , cho đường thẳng Gọi  đường thẳng qua gốc tọa độ O song song với  Gọi A, B, C điểm di động Oz , ,  Giá trị nhỏ AB  BC  CA A 2 C Lời giải B Chọn D  qua điểm Ta có: D uu r uuuu r uu r M  1; 0;0  , u   2m; m  1;1  m  , OM ; u    0;1  m ; m  1 uuuu r uu r OM , u  AB  AC  BC  BC  BC  BC  2d  ,    2d  O,    uu r u   m    m  1  4m   m  1    m  2 m4    m2    1  m  1 m2  m2   m  1 Dấu "  " đạt 1 , lúc A  C  O B hình chiếu vng góc O lên  Câu 46: Cho hàm số f  x  f  x  nhận giá trị dương có đạo hàm liên tục  0;3 thoả mãn  f  x   dx  f    3, f  3  f Giá trị   64 A 55 B 16 C Lời giải 19 D Chọn B  f  x  3 0 dx.0 f  x   1dx   0  Ta có 3 Do đó:   f  x  1 dx    f  x 1 3   dx  f  x 1   f  x 2  1     f x 1   3 f  x 1  0  f  x   thuvienhoclieu.com  f  3   f  0 1 Trang 21   Vì dấu "  " phải xảy tức thuvienhoclieu.com f  x  k  f  x    kx  C f  x 1   f    C  k     f  x 1  x   f  x  3k  C  C   f  3  Vì 12 55    x   1  f  x  43  Câu 47: sau: Cho hàm số Bất phương trình m   2;  1 A Chọn A y  f  x thỏa mãn f  2   3, f    bảng xét dâú đạo hàm f  x   m  f  x    4m x   2;  nghiệm với số thực m   2;  1 m   2;3 m   2;3 B C D Lời giải Có f  x   m  f  x    4m  f  x   m   f  x   m    Đặt t  f  x  m , bất phương trình trở thành :  4t     t    f  x   m  t  f  x   m  2, x   2; 2 Vậy ycbt  min  f  x   m   min f  x   m  2  m    2; 2   2;2     2  m  1  m  max f x  m    max f x  m         2 ; 2   2;2  Dựa vào bảng xét dấu sau: f  x ta có bảng biến thiên hàm số f  x đoạn  0;5 max  0;5 f  x   max  f   , f    Và f  f  3  f    f    f    f    f  3  f   Ta có   f x 2;5 f  f    f  5  f     f  5  f   Vì   đồng biến đoạn  nên   Suy  0;5  f  x   f   thuvienhoclieu.com Trang 22 thuvienhoclieu.com max 0;5 f  x   max  f   , f     f   Vậy y  f  x Câu 48: Cho hàm số có bảng xét dấu đạo hàm sau Biết  0;5 đoạn A f    f  3  f    f   f   , f  5 B Giá trị nhỏ nhất, giá trị lớn hàm f  2 , f  0 f  1 , f   C Lời giải D y  f  x f  5 , f   Chọn A Dựa vào bảng xét dấu f  x ta có bảng biến thiên hàm số f  x đoạn  0;5 sau: max  0;5 f  x   max  f   , f    Và f  f  3  f    f    f    f    f  3  f   Ta có   f x 2;5 f  f    f  5  f     f  5  f   Vì   đồng biến đoạn  nên   Suy Vậy  0;5  f  x   f   max 0;5 f  x   max  f   , f     f   Câu 49: Cho parabol  P : y  x đường tròn  C có tâm thuộc trục tung, bán kính tiếp P P C xúc với   hai điểm phân biệt Diện tích hình phẳng giới hạn     (phần bơi đậm hình vẽ bên) 14  3  2 12 A 2  3  12 B 4  3 12 C Lời giải  4 12 D Chọn D thuvienhoclieu.com Trang 23 A  a; a    P   a   thuvienhoclieu.com Gọi tiếp tuyến tA  P điểm tiếp xúc  C  , P nằm bên phải trục tung Phương trình t : y  a  x  a  a C , P điểm A A Vì     tiếp xúc với A nên C , P tiếp tuyến chung A     Do IA  t A  IA : y   1  x  a   a  I  0; a   2a 2  5 IA   a    a   a     C  : x   y     y    x 4  Vì Diện tích hình phẳng cần tính diện tích hình phẳng giới hạn   y  x2   4  5    x     x  dx   y   1 x 12 4     3 ;x  x    2  a; b  để đồ thị hàm số y  x3  ax2  3x  b cắt Câu 50: Có cặp số nguyên dương trục hoành điểm phân biệt A B C D Vô số Lời giải Chọn C Ta có: y   x  2ax   phương trình ln có hai nghiệm phân biệt ' x a  a  2 a a y   3  x  b  3 3 Đường thẳng qua hai điểm cực trị đồ thị hàm số là:  a  a    a   a  a   a ycd  y     3     b   0, a, b  ¢    3  3   3    Ta có Do ĐTHS cắt trục hồnh ba điểm phân biệt  a  a   yct  y       2 a   a  a2   a 2a   b    3     3  3   b  g  a  Ta có: g ' a     2a   a2   a   a a 9 a 2    27  a  b  27 0    2a  27 27 2a a   0, a  ¢  a   b  1, 27   a; b    1;1 ; g  1  1, 27; g    0.879 Ta có: Do a   b  g  a   g    0,879  a; b  trường hợp khơng có cặp sô nguyên dương  a; b    1;1 Như có cặp sơ ngun dương thuvienhoclieu.com Trang 24 ... vẽ 4? ??  3 12 C  4? ?? 12 D để đồ thị hàm số y  x  ax  x  b cắt trục hoành C D Vô số HẾT 1.D 11.A 21.A 31.D 41 .B 2.C 12.D 22.D 32.B 42 .B 3.C 13.D 23.D 33.A 43 .D 4. A 14. C 24. D 34. A... 44 .A ĐÁP ÁN 5.A 6.B 15.D 16.B 25.B 26.A 35.C 36.A 45 .D 46 .B 7.A 17.A 27.B 37.A 47 .B 8.B 18.B 28.D 38.A 48 .D 9.A 19.B 29.D 39.C 49 .D 10.D 20.B 30.D 40 .D 50.C HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Trong... 4!  24 (số) Trường hợp 2: Số chọn có chữ số lẻ chữ số chẵn, có 5 .4. 4!  48 0 (số) 2 Trường hợp 3: Số chọn có chữ số lẻ chữ số chẵn, có A5 A4  720 (số) Do đó, n  A   24  48 0  720  1224

Ngày đăng: 11/10/2022, 20:39

HÌNH ẢNH LIÊN QUAN

Câu 1: Trong hình vẽ bên, điểm M biểu diễn số phức z. Số phức z là: -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 1: Trong hình vẽ bên, điểm M biểu diễn số phức z. Số phức z là: (Trang 1)
Câu 12: Trong hình vẽ bên, điểm M biểu diễn số phức z. Khi đó số phức w  2z là -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 12: Trong hình vẽ bên, điểm M biểu diễn số phức z. Khi đó số phức w  2z là (Trang 2)
Câu 23: Cho hàm số y  có bảng biến thiên như sau -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 23: Cho hàm số y  có bảng biến thiên như sau (Trang 3)
Câu 21: Cho hình lăng trụ đứng có diện tích đáy là 3a 2. Độ dài cạnh bên là a 2. Khi đó thể tích của khối lăng trụ là: -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 21: Cho hình lăng trụ đứng có diện tích đáy là 3a 2. Độ dài cạnh bên là a 2. Khi đó thể tích của khối lăng trụ là: (Trang 3)
Câu 28: Cho hàm số y  có đồ thị như hình bên. Giá trị cực đại của hàm số là -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 28: Cho hàm số y  có đồ thị như hình bên. Giá trị cực đại của hàm số là (Trang 4)
Câu 36: Cho hình chóp S AB C. có M, SA 3 và ABC vuông tại B có cạnh BC , AC a 5. Tính theo akhoảng cách từ A đến SBC. -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 36: Cho hình chóp S AB C. có M, SA 3 và ABC vuông tại B có cạnh BC , AC a 5. Tính theo akhoảng cách từ A đến SBC (Trang 5)
Câu 47: Cho hàm số y  thỏa mãn 2 3, 2 và bảng xét dâú đạo hàm như sau: -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 47: Cho hàm số y  thỏa mãn 2 3, 2 và bảng xét dâú đạo hàm như sau: (Trang 6)
tại hai điểm phân biệt. Diện tích hình phẳng giới hạn bởi P và C (phần bôi đậm trong hình vẽ bên) bằng -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
t ại hai điểm phân biệt. Diện tích hình phẳng giới hạn bởi P và C (phần bôi đậm trong hình vẽ bên) bằng (Trang 7)
Bảng biến thiên -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
Bảng bi ến thiên (Trang 8)
Câu 8: Cho hình chóp .S ABC có đáy là tam giác đều cạnh bằng a, cạnh bên SB vng góc với mặt phẳng ABC -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 8: Cho hình chóp .S ABC có đáy là tam giác đều cạnh bằng a, cạnh bên SB vng góc với mặt phẳng ABC (Trang 9)
Câu 12: Trong hình vẽ bên, điểm M biểu diễn số phức z. Khi đó số phức w  2z là -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 12: Trong hình vẽ bên, điểm M biểu diễn số phức z. Khi đó số phức w  2z là (Trang 10)
Câu 18: Đường cong trong hình dưới là đồ thị của hàm số nào sau đây? -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 18: Đường cong trong hình dưới là đồ thị của hàm số nào sau đây? (Trang 11)
Câu 21: Cho hình lăng trụ đứng có diện tích đáy là 3a 2. Độ dài cạnh bên là a 2. Khi đó thể tích của khối lăng trụ là: -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 21: Cho hình lăng trụ đứng có diện tích đáy là 3a 2. Độ dài cạnh bên là a 2. Khi đó thể tích của khối lăng trụ là: (Trang 12)
Câu 32: Cho hình chóp .S ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 32: Cho hình chóp .S ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC (Trang 15)
Câu 36: Cho hình chóp S AB C. có M, SA 3 và ABC vuông tại B có cạnh BC , 5 -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 36: Cho hình chóp S AB C. có M, SA 3 và ABC vuông tại B có cạnh BC , 5 (Trang 16)
Bảng xét dấu: -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
Bảng x ét dấu: (Trang 17)
Câu 40: Biết rằng đồ thị hàm số y= () được cho như hình vẽ sau -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 40: Biết rằng đồ thị hàm số y= () được cho như hình vẽ sau (Trang 18)
Câu 42: Cho hình chóp S AB C. có đáy là tam giác ABC vuông tại C, AB  2 a, AC a và -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 42: Cho hình chóp S AB C. có đáy là tam giác ABC vuông tại C, AB  2 a, AC a và (Trang 19)
Thể tích hình chóp S AB C. là -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
h ể tích hình chóp S AB C. là (Trang 20)
, lúc này AC  và B là hình chiếu vng góc củ aO lên . -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
l úc này AC  và B là hình chiếu vng góc củ aO lên (Trang 21)
Câu 48: Cho hàm số y  có bảng xét dấu đạo hàm như sau -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
u 48: Cho hàm số y  có bảng xét dấu đạo hàm như sau (Trang 23)
Dựa vào bảng xét dấu của fx   -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
a vào bảng xét dấu của fx   (Trang 23)
Diện tích hình phẳng cần tính bằng diện tích hình phẳng giới hạn bởi 2 -  de on thi TN THPT 2022 mon toan phat trien tu de minh hoa de 4
i ện tích hình phẳng cần tính bằng diện tích hình phẳng giới hạn bởi 2 (Trang 24)
w