Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 175 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
175
Dung lượng
2,75 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - THẠCH THỊ DÂN TỔNG HỢP VÀ THỬ NGHIỆM HOẠT TÍNH SINH HỌC MỘT SỐ DẪN XUẤT MỚI CỦA SULFONAMIDE VÀ SULFONYLUREA LUẬN ÁN TIẾN SĨ HĨA HỌC TP HỒ CHÍ MINH – 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - THẠCH THỊ DÂN TỔNG HỢP VÀ THỬ NGHIỆM HOẠT TÍNH SINH HỌC MỘT SỐ DẪN XUẤT MỚI CỦA SULFONAMIDE VÀ SULFONYLUREA Chuyên ngành: Hóa hữu Mã số chuyên ngành: 44 01 14 LUẬN ÁN TIẾN SĨ HÓA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS ĐẶNG CHÍ HIỀN TS ĐẶNG VĂN SỬ TP HỒ CHÍ MINH – 2022 LỜI CẢM ƠN - -Trước hết, xin cảm ơn Học viện Khoa học Công nghệ, Viện Hàn lâm Khoa học Công nghệ Việt Nam tạo điều kiện thuận lợi để tơi hồn thành luận án tiến sĩ Tôi xin chân thành cảm ơn đến PGS.TS Đặng Chí Hiền, TS Đặng Văn Sử quý Thầy Cô Học viện Khoa học Công nghệ, Viện Cơng nghệ Hóa học truyền đạt kiến thức, hướng dẫn tận tình, tạo điều kiện cho tơi suốt thời gian thực đề tài nghiên cứu Tôi xin cảm ơn PGS.TS Phạm Tiết Khánh, Ban Giám hiệu quý Thầy Cô Trường Đại học Trà Vinh hỗ trợ tơi q trình học tập nghiên cứu Cảm ơn bạn nghiên cứu sinh, bạn học viên cao học bạn sinh viên động viên, chia sẻ q trình tơi thực đề tài nghiên cứu sinh Cảm ơn tất người thân gia đình ln động viên tinh thần chia sẻ công việc để tập trung học tập hoàn thành luận án tiến sĩ Xin chân thành cảm ơn! Thành phố Hồ Chí Minh, năm 2022 THẠCH THỊ DÂN LỜI CAM ĐOAN Luận án Tiến sĩ Hóa học: “Tổng hợp thử nghiệm hoạt tính sinh học số dẫn xuất sulfonamide sulfonylurea” thực hiện, số liệu, kết trung thực Thành phố Hồ Chí Minh, năm 2022 Nghiên cứu sinh THẠCH THỊ DÂN i MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT iii DANH MỤC CÁC BẢNG v DANH MỤC CÁC HÌNH vii DANH MỤC CÁC SƠ ĐỒ VÀ ĐỒ THỊ viii MỞ ĐẦU CHƯƠNG 1: TỔNG QUAN 1.1 Sơ lược sulfonamide…………………………………………………… 1.2 Sơ lược sulfonylurea…………………………………………………… 1.3 Sơ lược chalcone pyrazole……………………………………………8 1.3.1 Sơ lược chalcone 1.3.2 Sơ lược pyrazole 1.4 Ứng dụng vi sóng tổng hợp hữu cơ………………………………… 1.4.1 Nguyên tắc lị vi sóng 1.4.2 Ứng dụng vi sóng tổng hợp hữu 11 1.5 Tình hình nghiên cứu ngồi nước 11 1.5.1 Tổng hợp dẫn xuất sulfonamide sulfonylurea 11 1.5.2 Tổng hợp dẫn xuất sulfonamide sulfonylurea vi sóng 20 CHƯƠNG 2: THỰC NGHIỆM 24 2.1 Hóa chất thiết bị 24 2.2 Nội dung nghiên cứu 25 2.3 Phương pháp nghiên cứu 27 2.3.1 Phương pháp tổng hợp xác định cấu trúc sản phẩm 27 2.3.2 Phương pháp thử nghiệm hoạt tính sinh học 29 2.4 Thực nghiệm 29 2.4.1 Tổng hợp 4-hydrazinylbenzenesulfonamide (D1) 29 2.4.2 Tổng hợp dẫn xuất chalcone (D1a-D35a) 30 2.4.3 Tổng hợp dẫn xuất sulfonamide khung pyrazole (D1b-D35b) 30 2.4.4 Tổng hợp dẫn xuất phenylhydrazone (D1c–D5c) 30 2.4.5 Tổng hợp dẫn xuất sulfonamide khung thiazolidine-4-one (D1d-D5d) 31 2.4.6 Tổng hợp dẫn xuất sulfonylurea (D3e, D10e, D21e, D24e, D26e) 31 ii 2.4.7 Phương pháp thử nghiệm hoạt tính sinh học 31 2.4.7.1 Phương pháp thử nghiệm hoạt tính kháng vi sinh vật 31 2.4.7.2 Phương pháp thử nghiệm hoạt tính gây độc tế bào 33 2.4.7.3 Phương pháp thử nghiệm hoạt tính kháng viêm 34 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 37 3.1 Tổng hợp 4-hydrazinylbenzenesulfonamide (D1) 37 3.2 Tổng hợp dẫn xuất chalcone (D1a-D35a) 39 3.3 Tổng hợp dẫn xuất sulfonamide khung pyrazole (D1b-D35b) 64 3.3.1 Khảo sát hiệu suất phản ứng tổng hợp dẫn xuất sulfonamide khung pyrazole sử dụng phương pháp hồi lưu thông thường 65 3.3.2 Khảo sát hiệu suất phản ứng tổng hợp dẫn xuất sulfonamide khung pyrazole sử dụng phương pháp vi sóng 66 3.4 Tổng hợp dẫn xuất phenylhydrazone (D1c-D5c) 106 3.5 Tổng hợp dẫn xuất sulfonamide khung thiazolidine-4-one (D1d-D5d) 111 3.6 Tổng hợp dẫn xuất sulfonylurea (D3e, D10e, D21e, D24e, D26e) 120 3.7 Kết thử nghiệm hoạt tính sinh học 136 3.7.1 Kết thử nghiệm hoạt tính kháng vi sinh vật 136 3.7.2 Kết thử nghiệm hoạt tính gây độc tế bào 140 3.7.3 Kết thử nghiệm hoạt tính kháng viêm 142 KẾT LUẬN VÀ KIẾN NGHỊ 146 KẾT LUẬN 146 KIẾN NGHỊ 148 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CÔNG BỐ iii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT Ký hiệu Tiếng Anh CFU Colony Forming Unit Tiếng Việt CTCT Công thức cấu tạo CTPT Công thức phân tử D Tỷ trọng DMSO Dimethyl sulfoxide COX-1 Cyclooxygenases COX-2 Cyclooxygenases PTSA p-Toluenesulfonide Acid NSAIDs Non-steroidal anti-inflammatory drugs FT-IR Fourier-transform Infrared Spectroscopy Proton Nuclear Magnetic Resonance H-NMR 13 C-NMR DEPT-NMR HR-ESI-MS HSQC HMBC Carbon Nuclear Magnetic Resonance Distortionless Enhancement Thuốc kháng viêm không steroid Quang phổ hồng ngoại biến đổi Fourier Cộng hưởng từ hạt nhân proton Cộng hưởng từ hạt nhân carbon Phổ DEPT of Polarisation Transfer High Resolution Electrospray Ionisation Phổ khối lượng phun mù Mass Spectrometry ion hóa phân giải cao Heteronuclear Single Quantum Phổ tương tác dị nhân qua Coherence nối Heteronuclear Multiple Bond Phổ tương tác dị nhân qua Correlation nhiều nối ĐTĐ Đái tháo đường MIC Minimum Inhibitory Concentration Nồng độ ức chế tối thiểu IC50 Half maximal inhibitory concentration Nồng độ ức chế 50 % MBC Minimum Bactericidal Concentration Nồng độ tối thiểu LB Lysogeny Broth PDA Potato Dextrose Agar iv MTT (3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazol bromide) NCI National Cancer Institute Viện ung thư quốc gia OD Optical Density Mật độ quang học SRB Sulforhodamine B TCA Trichloracetic acid LD50 Lethal Concentration Nồng độ gây chết FACs Flow cytometry Đo dòng chảy tế bào PBS Phosphate buffer saline CA Carbonic anhydrase J Coupling constant Hằng số ghép m Multiplet Mũi đa ‘ s Singlet Mũi đơn ‘ Triplet Mũi ba ‘ Doublet Mũi đôi ‘ dd doublet of doublet Mũi đơi đơi MW Microwave Vi sóng TLC Thin layer chromatography Sắc ký lớp ‘ Nanometer ‘ Hour Giờ ‘ δ Chemical shift Độ dịch chuyển hóa học Micro ‘ t d nm h v DANH MỤC CÁC BẢNG Bảng 1.1 Các cấu trúc hệ sulfonylurea Bảng 2.1 Hóa chất sử dụng 24 Bảng 2.2 Dụng cụ thiết bị 25 Bảng 3.1 Bảng 3.2 Bảng 3.3 Bảng 3.4 Bảng 3.5 Bảng 3.6 Bảng 3.7 Dữ liệu phổ H-NMR trúc 4– hydrazinylbenzenesulfonamide (D1) Hiệu suất tổng hợp dẫn xuất chalcone phụ thuộc vào vị trí loại nhóm Điểm chảy dẫn xuất chalcone phụ thuộc vào vị trí loại nhóm Dữ liệu MS, HR-MS phổ FT-IR dẫn xuất chalcone (D1a-D35a) Dữ liệu phổ NMR dẫn xuất chalcone (D1a-D35a) Dữ liệu phổ 1H-NMR 4-(5-(3-hydroxyphenyl)-3-phenyl-4,5dihydro-1H-pyrazol-1-yl)benzenesulfonamide (D4b) Dữ liệu phổ 13C-NMR DEPT 4-(5-(3-hydroxyphenyl)-3phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamide (D4b) Dữ liệu phổ 1H-NMR, Bảng 3.8 cấu 13 38 41 41 45 52 69 70 C-NMR HMBC 4-(5-(3- hydroxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzene 71 sulfonamide (D4b) Bảng 3.9 Bảng 3.10 Hiệu suất tổng hợp dẫn xuất sulfonamide chứa khung pyrazole phụ thuộc vào vị trí loại nhóm Điểm chảy dẫn xuất sulfonamide chứa khung pyrazole phụ thuộc vào vị trí loại nhóm Bảng 3.11 Bảng 3.12 Dữ liệu HR-MS FT-IR dẫn xuất sulfonamide khung pyrazole (D1b-D35b) Dữ liệu phổ NMR dẫn xuất sulfonamide khung pyrazole (D1b-D35b) 72 72 76 88 Khảo sát hiệu suất phản ứng tổng hợp dẫn xuất Bảng 3.13 phenylhydrazone sử dụng phương pháp hồi lưu thông thường 106 chiếu xạ vi sóng (D1c-D5c) vi Bảng 3.14 Dữ liệu phổ 1H-NMR dẫn xuất phenylhydrazone (D1cD5c) 109 Khảo sát hiệu suất phản ứng tổng hợp sulfonamide khung Bảng 3.15 thiazolidine-4-one sử dụng phương pháp hồi lưu thơng thường chiếu xạ vi sóng Hiệu suất tổng hợp dẫn xuất thiazolidine-4-one 112 Bảng 3.16 phenylhydrazone sử dụng phương pháp hồi lưu thông thường 113 vi sóng Bảng 3.17 Bảng 3.18 Bảng 3.19 Dữ liệu HR-MS phổ FT-IR sulfonamide khung thiazolidine-4-one (D1d-D5d) Dữ liệu phổ NMR sulfonamide khung thiazolidine-4-one (D1d-D5d) Dữ liệu phổ 1H-NMR 4-(3,5-di-p-tolyl-4,5-dihydro-1Hpyrazol-1-yl)-N-(p-tolyl carbamoyl) benzenesulfonamide (D10e) Dữ liệu phổ 13 115 117 122 C-NMR DEPT 4-(3,5-di-p-tolyl-4,5- Bảng 3.20 dihydro-1H-pyrazol-1-yl)-N-(p-tolyl carbamoyl) benzene 123 sulfonamide (D10e) Dữ liệu phổ 1H-NMR, 13C-NMR HMBC 4-(3,5-di-p-tolylBảng 3.21 4,5-dihydro-1H-pyrazol-1-yl)-N-(p-tolylcarbamoyl) benzene 124 sulfonamide (D10e) Dữ liệu phổ 13C-NMR sulfonylurea D3e, D10e, D21e, Bảng 3.22 D24e, D26e 126 Kết thử nghiệm hoạt tính kháng VSV sulfonamide Bảng 3.23 khung pyrazole (D1b-D33b) sulfonamide khung thiazolidine-4-one (D1d-D5d) Hoạt tính chống tăng sinh dẫn xuất sulfonamide khung Bảng 3.24 pyrazole Khả ức chế sản sinh NO triarylpyrazole Bảng 3.25 sulfonamide 137 141 143 148 Kiến nghị Từ số kết thu q trình nghiên cứu, chúng tơi đề nghị hướng phát triển cho đề tài sau: Tiếp tục phát triển nghiên cứu tổng hợp dẫn xuất sulfonamide từ sulfanilamide qua trung gian chalcone, qua trung gian dẫn xuất phenylhydrazone với nhóm đa dạng Tiếp tục phát triển tổng hợp dẫn xuất sulfonylurea dựa dẫn xuất phenylhydrazone, dẫn xuất sulfonamide chứa khung pyrazole khung thiazolidine-4-one tổng hợp Tiếp tục phát triển tổng hợp dẫn xuất sulfonamide dạng oxazolidine-4one từ dẫn xuất phenylhydrazone với 2-hydroxyacetic acid nhằm làm phong phú dẫn xuất sulfonamide Tiếp tục phát triển thử nghiệm hoạt tính kháng vi sinh vật, kháng viêm, gây độc tế bào dẫn xuất sulfonamide sulfonylurea tổng hợp DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ Trong nước Thạch Thị Dân, Bùi Thị Bích Hạnh, Nguyễn Hữu Thiên An, Nguyễn Thành Danh, Đặng Văn Sử, Đặng Chí Hiền, Tổng hợp số dẫn xuất thiazolidinone qua trung gian phenylhydrazone kỹ thuật vi sóng, Tạp chí hóa học, 2017, 55 (5E34), 274-279 Thạch Thị Dân, Nguyễn Thị Kim Ngân, Lê Thị Tường Vi, Nguyễn Thành Danh, Đặng Văn Sử, Đặng Chí Hiền, Tổng hợp sulfonylurea số sulfonamide từ sulfonamide, acetophenone dẫn xuất benzaldehyde, Tạp chí hóa học, 2017, 55 (5E34), 288-293 Quốc tế Thi-Dan Thach, T.Tuong Vi Le, H.Thien-An Nguyen, Chi-Hien Dang, Van-Su Dang, Thanh-Danh Nguyen, Synthesis of sulfonamides bearing 1,3,5triarylpyrazoline and 4-thiazolidinone moieties as novel antimicrobial agents, Journal of the Serbian Chemical Society, 2019, (84 (0)), 1-8 (Q3, IF 1.116) Thi-Dan Thach, T My-Thao Nguyen, T Anh-Thu Nguyen, Chi-Hien Dang, Thanh-Binh Luong, Van-Su Dang, Kien-Sam Banh, Van-Sieu Luc, Thanh-Danh Nguyen, Synthesis and antimicrobial, antiproliferative and anti-inflammatory activities of novel 1,3,5- substituted pyrazoline sulphonamides, Arabian Journal of Chemistry, 2021, Vol.14, 11, 103408 (Q1, IF 5.165) TÀI LIỆU THAM KHẢO [1] K O Alfarouk, C.-M Stock, S Taylor, M Walsh, A K Muddathir, and D Verduzco, Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp, Cancer cell international, 2015, 15 (1), 1-13 [2] T Burroughs, M Najafi, S M Lemon, and S L Knobler, The resistance phenomenon in microbes and infectious disease vectors: implications for human health and strategies for containment: workshop summary, 2003, [3] J M Thiede, S L Kordus, B J Turman, J A Buonomo, C C Aldrich, and Y Minato, Targeting intracellular p-aminobenzoic acid production potentiates the anti-tubercular action of antifolates, Scientific reports, 2016, (1), 1-8 [4] E Borowska, E Felis, and K Miksch, Degradation of sulfamethoxazole using UV and UV/H2O2 processes, Journal of Advanced Oxidation Technologies, 2015, 18 (1), 69-77 [5] Đ C Hiền, Một số phương pháp tổng hợp hữu đại, NXB Đại học Quốc gia TP.HCM, 2017, [6] S Sen, K D Ruchika, T Easwari, and S Gohri, Therapeutic Aspects of Sulfonylureas: A Brief Review, Journal of Chemical and Pharmaceutical Research, 2016, (12), 121-130 [7] M A Abd el and Gawaad Awas, Synthesis and Cyclization Reactions with Pyrazolopyrimidinyl Keto-esters and their Enzymaic Activity, Acta Chimica Slovenica, 2008, 55 (3), 492-501 [8] A.-R Farghaly, Synthesis of some new indole derivatives containing pyrazoles with potential antitumor activity, Arkivoc, 2010, 11 177-187 [9] J Yadav, B S Reddy, G Narasimhulu, and G Satheesh, First example of C3 alkylation of indoles with activated azetidines catalyzed by indium (III) bromide, Synlett, 2009, 2009 (05), 727-730 [10] Y.-S Zhang, X.-Y Tang, and M Shi, Divergent synthesis of indole-fused polycycles via Rh (II)-catalyzed intramolecular [3+ 2] cycloaddition and C– H functionalization of indolyltriazoles, Organic Chemistry Frontiers, 2015, (11), 1516-1520 [11] T T Đ Trương Phương, Hóa dược tập 2, NXB Giáo dục Việt Nam, Hà Nội, 2011 [12] A Tačić, V Nikolić, L Nikolić, and I Savić, Antimicrobial sulfonamide drugs, Advanced technologies, 2017, (1), 58-71 [13] J J Petkowski, W Bains, and S Seager, Natural products containing a Nitrogen–Sulfur bond, Journal of natural products, 2018, 81 (2), 423-446 [14] G S Hassan, S M Abou-Seri, G Kamel, and M M Ali, Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: design, synthesis and evaluation as potential anti-inflammatory agents, European journal of medicinal chemistry, 2014, 76 482-493 [15] G Dannhardt and W Kiefer, Cyclooxygenase inhibitors–current status and future prospects, European journal of medicinal chemistry, 2001, 36 (2), 109126 [16] A Zarghi and S Arfaei, Selective COX-2 inhibitors: a review of their structure-activity relationships, Iranian journal of pharmaceutical research: IJPR, 2011, 10 (4), 655 [17] M Mahdavi, M S Shirazi, R Taherkhani, M Saeedi, E Alipour, and F H Moghadam, Synthesis, biological evaluation and docking study of 3-aroyl-1(4-sulfamoylphenyl) thiourea derivatives as 15-lipoxygenase inhibitors, European journal of medicinal chemistry, 2014, 82 308-313 [18] A Bertolini, A Ottani, and M Sandrini, Dual acting anti-inflammatory drugs: a reappraisal, Pharmacological Research, 2001, 44 (6), 437-450 [19] A Zarghi, L Najafnia, B Daraee, O G Dadrass, and M Hedayati, Synthesis of 2, 3-diaryl-1, 3-thiazolidine-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors, Bioorganic & medicinal chemistry letters, 2007, 17 (20), 5634-5637 [20] S A Rostom, Synthesis and in vitro antitumor evaluation of some indeno [1, 2-c] pyrazol (in) es substituted with sulfonamide, sulfonylurea (-thiourea) pharmacophores, and some derived thiazole ring systems, Bioorganic & medicinal chemistry, 2006, 14 (19), 6475-6485 [21] H M Faidallah, M S Al-Saadi, S A Rostom, and H T Fahmy, Synthesis of some sulfonamides, disubstituted sulfonylureas or thioureas and some structurally related variants A class of promising antitumor agents, Medicinal Chemistry Research, 2007, 16 (6), 300-318 [22] J Sławiński, K Szafrański, D Vullo, and C T Supuran, Carbonic anhydrase inhibitors Synthesis of heterocyclic 4-substituted pyridine-3-sulfonamide derivatives and their inhibition of the human cytosolic isozymes I and II and transmembrane tumor-associated isozymes IX and XII, European journal of medicinal chemistry, 2013, 69, 701-710 [23] K Szafrański and J Sławiński, Synthesis of novel 1-(4-substituted pyridine-3sulfonyl)-3-phenylureas with potential anticancer activity, Molecules, 2015, 20 (7), 12029-12044 [24] G Pasello, L Urso, P Conte, and A Favaretto, Effects of sulfonylureas on tumor growth: a review of the literature, The oncologist, 2013, 18 (10), 1118 [25] G Pasello, ESMO Translational Research Fellowship “Identification of novel molecular targets and biological agents for the chemotherapy of malignant pleural mesothelioma”, 2012 [26] C Wu, M Wang, Q Tang, R Luo, L Chen, and P Zheng, Design, synthesis, activity and docking study of sorafenib analogs bearing sulfonylurea unit, Molecules, 2015, 20 (10), 19361-19371 [27] R Wondergem, M Cregan, L Strickler, R Miller, and J Suttles, Membrane potassium channels and human bladder tumor cells: II Growth properties, The Journal of membrane biology, 1998, 161 (3), 257-262 [28] H Malhi, A N Irani, P Rajvanshi, S O Suadicani, D C Spray, and T V McDonald, KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell Lines: Implications for liver growth control and potential therapeutic targeting, Journal of Biological Chemistry, 2000, 275 (34), 26050-26057 [29] Y Murti, A Goswam, and P Mishra, Synthesis and antioxidant activity of some chalcones and flavanoids, Inter J Pharm Tech Res, 2013, 5, 811-818 [30] W G Lima, J Tauany Andrade, F Rocha da Silva Santos, J M Campos Palumbo, K M Silva Herrera, and L E de Castro, Antibacterial, antifungal, and antiviral activities of chalcone-bearing tetrahydropyranyl and 2, 4- dihydroxyl moieties, Revista Colombiana de Ciencias Químico- Farmacéuticas, 2020, 49 (1), 218-233 [31] R Kalirajan, S Sivakumar, S Jubie, B Gowramma, and B Suresh, Synthesis and biological evaluation of some heterocyclic derivatives of chalcones, International J of Chem Tech Research, 2009, (1), 27-34 [32] B.-z Ren, M Ablise, X.-c Yang, B.-e Liao, and Z Yang, Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity, Medicinal Chemistry Research, 2017, 26 (9), 1871-1883 [33] S A Khan, B Ahmed, and T Alam, Synthesis and antihepatotoxic activity of some new chalcones containing 1, 4-dioxane ring system, Pak J Pharm Sci, 2006, 19 (4), 290 [34] S Sakthinathan, G Vanangamudi, and G Thirunarayanan, Synthesis, spectral studies and antimicrobial activities of some 2-naphthyl pyrazoline derivatives, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 693-700 [35] K Manna and Y K Agrawal, Microwave assisted synthesis of new indophenazine 1, 3, 5-trisubstruted pyrazoline derivatives of benzofuran and their antimicrobial activity, Bioorganic & Medicinal Chemistry Letters, 2009, 19 (10), 2688-2692 [36] B F Abdel-Wahab, H A Abdel-Aziz, and E M Ahmed, Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4, 5-dihydro-5-aryl-1-[4-(aryl)-1, 3-thiazol-2-yl]1H-pyrazoles, European journal of medicinal chemistry, 2009, 44 (6), 26322635 [37] P G Baraldi, S Manfredini, R Romagnoli, L Stevanato, A Zaid, and R Manservigi, Synthesis and anti-HSV-1 activity of substituted pyrazolo [3, 4d] pyridazin-7-one nucleosides, Nucleosides & nucleotides, 1998, 17 (12), 2165-2173 [38] Z N Siddiqui, T M Musthafa, A Ahmad, and A U Khan, Thermal solventfree synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents, Bioorganic & medicinal chemistry letters, 2011, 21 (10), 2860-2865 [39] B P Bandgar, S S Gawande, R G Bodade, N M Gawande, and C N Khobragade, Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents, Bioorganic & medicinal chemistry, 2009, 17 (24), 8168-8173 [40] S Bano, K Javed, S Ahmad, I Rathish, S Singh, and M Alam, Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents, European journal of medicinal chemistry, 2011, 46 (12), 5763-5768 [41] R Bashir, S Ovais, S Yaseen, H Hamid, M Alam, and M Samim, Synthesis of some new 1, 3, 5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents, Bioorganic & medicinal chemistry letters, 2011, 21 (14), 4301-4305 [42] I Rathish, K Javed, S Ahmad, S Bano, M Alam, and K Pillai, Synthesis and antiinflammatory activity of some new 1, 3, 5-trisubstituted pyrazolines bearing benzene sulfonamide, Bioorganic & medicinal chemistry letters, 2009, 19 (1), 255-258 [43] R S Joshi, P G Mandhane, S D Diwakar, S K Dabhade, and C H Gill, Synthesis, analgesic and anti-inflammatory activities of some novel pyrazolines derivatives, Bioorganic & medicinal chemistry letters, 2010, 20 (12), 3721-3725 [44] M Amir, H Kumar, and S A Khan, Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents, Bioorganic & medicinal chemistry letters, 2008, 18 (3), 918-922 [45] P K Sharma, S Kumar, P Kumar, P Kaushik, D Kaushik, and Y Dhingra, Synthesis and biological evaluation of some pyrazolylpyrazolines as antiinflammatory–antimicrobial agents, European journal of medicinal chemistry, 2010, 45 (6), 2650-2655 [46] S Khode, V Maddi, P Aragade, M Palkar, P K Ronad, and S Mamledesai, Synthesis and pharmacological evaluation of a novel series of 5-(substituted) aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents, European journal of medicinal chemistry, 2009, 44 (4), 1682-1688 [47] F F Barsoum and A S Girgis, Facile synthesis of bis (4, 5-dihydro-1Hpyrazole-1-carboxamides) and their thio-analogues of potential PGE2 inhibitory properties, European journal of medicinal chemistry, 2009, 44 (5), 2172-2177 [48] M E Shoman, M Abdel-Aziz, O M Aly, H H Farag, and M A Morsy, Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives, European journal of medicinal chemistry, 2009, 44 (7), 3068-3076 [49] M Johnson, B Younglove, L Lee, R LeBlanc, H Holt Jr, and P Hills, Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4, Bioorganic & medicinal chemistry letters, 2007, 17 (21), 5897-5901 [50] Z Ratković, Z D Juranić, T Stanojković, D Manojlović, R D Vukićević, and N Radulović, Synthesis, characterization, electrochemical studies and antitumor activity of some new chalcone analogues containing ferrocenyl pyrazole moiety, Bioorganic chemistry, 2010, 38 (1), 26-32 [51] H Rajak, M D Kharya, and P Mishra, Synthesis of some novel oxadiazole and oxadiazoline analogues for their antiinflammatory activity, Yakugaku Zasshi, 2007, 127 (10), 1757-1764 [52] S Rollas and S G Kỹỗỹkgỹzel, Biological activities of hydrazone derivatives, Molecules, 2007, 12 (8), 1910-1939 [53] S O Mihigo, W Mammo, M Bezabih, K Andrae-Marobela, and B M Abegaz, Total synthesis, antiprotozoal and cytotoxicity activities of rhuschalcone VI and analogs, Bioorganic & medicinal chemistry, 2010, 18 (7), 2464-2473 [54] O Unsal-Tan, K Ozadali, K Piskin, and A Balkan, Molecular modeling, synthesis and screening of some new 4-thiazolidinone derivatives with promising selective COX-2 inhibitory activity, European journal of medicinal chemistry, 2012, 57, 59-64 [55] P Liu, Y.-M Pan, Y.-L Xu, and H.-S Wang, PTSA-catalyzed Mannich-type– cyclization–oxidation tandem reactions: one-pot synthesis of 1, 3, 5- substituted pyrazoles from aldehydes, hydrazines and alkynes, Organic & biomolecular chemistry, 2012, 10 (24), 4696-4698 [56] S Y Hassan, Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives, Molecules, 2013, 18 (3), 2683-2711 [57] Z Liu, L Pan, Y.-h Li, S.-h Wang, and Z.-m Li, Synthesis and herbicidal activity of novel sulfonylureas containing 1, 2, 4-triazolinone moiety, Chemical Research in Chinese Universities, 2013, 29 (3), 466-472 [58] A Lavania, K Dasary, M Yadav, and A V Anand, Eco-friendly Synthesis and characterization of some (2-pyrazoline) and (2-isoxazoline) containing anthracene moiety by using PEG (400) as a Catalyst, J Appl Chem, 2013, 2, 1341-1346 [59] H M Faidallah, S A Rostom, and K A Khan, Synthesis and biological evaluation of pyrazole chalcones and derived bipyrazoles as antiinflammatory and antioxidant agents, Archives of pharmacal research, 2015, 38 (2), 203-215 [60] K R Abdellatif, M A Abdelgawad, H A Elshemy, and S S Alsayed, Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile, Bioorganic chemistry, 2016, 64, 1-12 [61] E I M Fatma Abd El-Fattah Ragab , Gehad A Abdel Jaleel , Ahmed Abbass Mohamed Abd El-Rahman Selim, and Yassin Mohammed Nissan, Synthesis of Hydroxybenzofuranyl-pyrazolyl and Hydroxyphenyl-pyrazolyl Chalcones and Their Corresponding Pyrazoline Derivatives as COX Inhibitors, Antiinflammatory and Gastroprotective Agents, Chem Pharm Bull (Tokyo), 2020, 68 (8), 742-752 [62] D L Namera, S S Thakkar, P Thakor, U Bhoya, and A Shah, Arylidene analogues as selective COX-2 inhibitors: synthesis, characterization, in silico and in vitro studies, Journal of Biomolecular Structure and Dynamics, 2020, 1-10 [63] M A Almehmadi, A Aljuhani, S Y Alraqa, I Ali, N Rezki, and M R Aouad, Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1, 2, 3-triazole conjugates, Journal of Molecular Structure, 2021, 12 (25), 129-148 [64] V Angelova, V Karabeliov, P A Andreeva‐Gateva, and J Tchekalarova, Recent developments of hydrazide/hydrazone derivatives and their analogs as anticonvulsant agents in animal models, Drug development research, 2016, 77 (7), 379-392 [65] K Bozorov, J Zhao, and H A Aisa, 1, 2, 3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview, Bioorganic & medicinal chemistry, 2019, 27 (16), 3511-3531 [66] Z REZKI and M R Aouad, Green ultrasound-assisted three-component click synthesis of novel 1H-1, 2, 3-triazole carrying benzothiazoles and fluorinated1, 2, 4-triazole conjugates and their antimicrobial evaluation, Acta pharmaceutica, 2017, 67 (3), 309-324 [67] G Mariappan, B Saha, S Datta, D Kumar, and P Haldar, Design, synthesis and antidiabetic evaluation of oxazolone derivatives, Journal of Chemical Sciences, 2011, 123 (3), 335-341 [68] D L Namera, K M Kapadiya, M M Chhatrola, and U C Bhoya, Microwave Assisted Synthesis of some Novel Sulphonamide Bearing Pyrazolone Core Structure, International Letters of Chemistry, Physics and Astronomy, 2014, 30, 116-126 [69] N.-B Sun, J.-Z Jin, and F.-Y He, Microwave assisted synthesis, antifungal activity, and DFT study of some novel triazolinone derivatives, BioMed research international, 2015, 1-8 [70] S L Gaonkar, N B, N S Shetty, and H Shimizu, Microwave-assisted synthesis and evaluation of N-substituted thiazolidine-2,4-dione derivatives as antimicrobial agents, Interactive Medicinal Chemistry, 2014, (1), 1-5 [71] A Kołaczek, I Fusiarz, J Ławecka, and D Branowska, Biological activity and synthesis of sulfonamide derivatives: a brief review, Chemik, 2014, 68 (7), 620-628 [72] G A Suaifan, M B Shehadeh, R M Darwish, H Al-Ijel, and V Abbate, Design, synthesis and in vivo evaluation of novel glycosylated sulfonylureas as antihyperglycemic agents, Molecules, 2015, 20 (11), 20063-20078 [73] C Kharbanda, M S Alam, H Hamid, K Javed, S Bano, and Y Ali, Novel benzothiazole based sulfonylureas/sulfonylthioureas: design, synthesis and evaluation of their antidiabetic potential, New Journal of Chemistry, 2016, 40 (8), 6777-6786 [74] R Soliman, Preparation and antidiabetic activity of some sulfonylurea derivatives of 3, 5-disubstituted pyrazoles, Journal of medicinal chemistry, 1979, 22 (3), 321-325 [75] K E.P, Benzalacetophenone (Chalcone), Organic Syntheses, 1941, 1-78 [76] P D Neuenfeldt, B B Drawanz, G M Siqueira, C R Gomes, S M Wardell, and A F Flores, Efficient solvent-free synthesis of thiazolidin-4-ones from phenylhydrazine and 2, 4-dinitrophenylhydrazine, Tetrahedron Letters, 2010, 51 (23), 3106-3108 [77] Z Azza and M Oudghiri, In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta, Pharmacognosy research, 2015, (2), 2-13 [78] H Jouad, M Haloui, H Rhiouani, J El Hilaly, and M Eddouks, Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez– Boulemane), Journal of Ethnopharmacology, 2001, 77 (2-3), 175-182 [79] Y Miyamae, M O Villareal, M B Abdrabbah, H Isoda, and H Shigemori, Hirseins A and B, daphnane diterpenoids from Thymelaea hirsuta that inhibit melanogenesis in B16 melanoma cells, Journal of natural products, 2009, 72 (5), 938-941 [80] M Karnati, R H Chandra, C Veeresham, and B Kishan, Anti-arthritic activity of root bark of Oroxylum indicum (L.) vent against adjuvant-induced arthritis, Pharmacognosy research, 2013, (2), 121 [81] W A Mulla, S Kuchekar, V Thorat, A Chopade, and B Kuchekar, Antioxidant, Antinociceptive Anti-inflammatory Activities of Ethanolic Extract of Leaves of Alocasia indica (Schott.), Journal of young pharmacists, 2010, (2), 137-143 [82] M Balouiri, M Sadiki, and S K Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, Journal of pharmaceutical analysis, 2016, (2), 71-79 [83] S Cheenpracha, E.-J Park, B Rostama, J M Pezzuto, and L C Chang, Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide, epimuqubilin A, Marine drugs, 2010, (3), 429-437 [84] Y Tian, S Zhou, R Takeda, K Okazaki, M Sekita, and K Sakamoto, Antiinflammatory activities of amber extract in lipopolysaccharide-induced RAW 264.7 macrophages, Biomedicine & Pharmacotherapy, 2021, 141, 111-854 [85] T.-Y Hu, J.-M Ju, L.-H Mo, L Ma, W.-H Hu, and R.-R You, Antiinflammation action of xanthones from Swertia chirayita by regulating COX2/NF-κB/MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells, Phytomedicine, 2019, 55, 214-221 [86] H M.-D Wang, L Fu, C C Cheng, R Gao, M Y Lin, and H L Su, Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells, Antioxidants, 2019, (8), 270 [87] Y Zheng, S Liu, C Fan, H Zeng, H Huang, and C Tian, Holistic quality evaluation of Qingwen Baidu Decoction and its anti-inflammatory effects, Journal of Ethnopharmacology, 2020, 263, 113-145 [88] S Suzuki, J Abe, Y Kudo, M Shirai, and K.-i Kimura, Inhibition of melanin production and promotion of collagen production by the extract of Kuji amber, Bioscience, biotechnology, and biochemistry, 2020, 84 (3), 518-525 [89] R Harigae, K Moriyama, and H Togo, Preparation of 3, 5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine, The Journal of organic chemistry, 2014, 79 (5), 2049-2058 [90] H I Gul, E Mete, P Taslimi, I Gulcin, and C T Supuran, Synthesis, carbonic anhydrase I and II inhibition studies of the 1, 3, 5-trisubstitutedpyrazolines, Journal of enzyme inhibition and medicinal chemistry, 2017, 32 (1), 189-192 [91] R Fioravanti, N Desideri, A Carta, E M Atzori, I Delogu, and G Collu, Inhibitors of Yellow Fever Virus replication based on 1, 3, 5-triphenyl-4, 5dihydropyrazole scaffold: design, synthesis and antiviral evaluation, European journal of medicinal chemistry, 2017, 141, 15-25 [92] L Di Nunno, P Vitale, A Scilimati, S Tacconelli, and P Patrignani, Novel synthesis of 3, 4-diarylisoxazole analogues of valdecoxib: reversal cyclooxygenase-2 selectivity by sulfonamide group removal, Journal of medicinal chemistry, 2004, 47 (20), 4881-4890 [93] A S Kalgutkar, B C Crews, S W Rowlinson, A B Marnett, K R Kozak, and R P Remmel, Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors, Proceedings of the National Academy of Sciences, 2000, 97 (2), 925-930 [94] T D Penning, J J Talley, S R Bertenshaw, J S Carter, P W Collins, and S Docter, Synthesis and biological evaluation of the 1, 5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3(trifluoromethyl)-1 H-pyrazol-1-yl] benzenesulfonamide (SC-58635, celecoxib), Journal of medicinal chemistry, 1997, 40 (9), 1347-1365 [95] S Jubie, B Gowramma, K Nitin, N Jawahar, R Kalirajan, and S Gomathy, Synthesis and biological evaluation of some 3-(methoxy phenyl)-2-arylthiazolidin-4-one derivatives, Indian J Pharm Sci, 2009, (1), 32-38 [96] J Sharma, A Al-Omran, and S Parvathy, Role of nitric oxide in inflammatory diseases, Inflammopharmacology, 2007, 15 (6), 252-259 [97] B Umesha, Y B Basavaraju, and C Mahendra, Synthesis and biological screening of pyrazole moiety containing analogs of podophyllotoxin, Medicinal Chemistry Research, 2015, 24 (1), 142-151 [98] F A E.-F Ragab, E I Mohammed, G A A Jaleel, A A M Abd El-Rahman, and Y M Nissan, Synthesis of hydroxybenzofuranyl-pyrazolyl and Hydroxyphenyl-pyrazolyl chalcones and their corresponding pyrazoline derivatives as COX inhibitors, anti-inflammatory and gastroprotective agents, Chemical and Pharmaceutical Bulletin, 2020, 68 (8), 742-752 [99] I M El-Deeb, S M Bayoumi, M A El-Sherbeny, and A.-M Alaa, Synthesis and antitumor evaluation of novel cyclic arylsulfonylureas: ADME-T and pharmacophore prediction, European journal of medicinal chemistry, 2010, 45 (6), 2516-2530 [100] R A Azzam, R E Elsayed, and G H Elgemeie, Design, synthesis, and antimicrobial evaluation of a new series of N-sulfonamide 2-pyridones as dual inhibitors of DHPS and DHFR enzymes, ACS omega, 2020, (18), 1040110414 [101] R A Azzam, H A Elboshi, and G H Elgemeie, Novel Synthesis and Antiviral Evaluation of New Benzothiazole-Bearing N-Sulfonamide 2Pyridone Derivatives as USP7 Enzyme Inhibitors, ACS omega, 2020, (46), 30023-30036 [102] R A Azzam, R E Elsayed, and G H Elgemeie, Design and Synthesis of a New Class of Pyridine-Based N-Sulfonamides Exhibiting Antiviral, Antimicrobial, and Enzyme Inhibition Characteristics, ACS omega, 2020, (40), 26182-26194 [103] R E Elsayed, T M Madkour, and R A Azzam, Tailored-design of electrospun nanofiber cellulose acetate/poly (lactic acid) dressing mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing, International Journal of Biological Macromolecules, 2020, 164, 1984-1999 [104] R Sethi and M Ahuja, Synthesis., Characterization and Antibacterial Activity of Cobalt Complex of 2-Pyrazoline with Pyridinyl Moiety, Int J Pharm Tech Res, 2016, (1), 35-40 [105] K A Kamani and K D Patel, Synthesis, characterization and biological evaluation of coumarin-pyrazole-pyrazoline hybrids, World J Pharm Res, 2017, 6, 939-953 [106] F V Ahmad Pesaran Seiied Bonakdara, Mahbobeh Farokhpourb, Mohammad Hossein Nasr Esfahanic and Ahmad Reza Massaha, Synthesis and Anticancer Activity Assay of Novel Chalcone-Sulfonamide Derivatives, Iran J Pharm Res, 2017, 16 (2), 565–568 [107] L Ottonello, P Dapino, M C Scirocco, A Balbi, M Bevilacqua, and F Dallegri, Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in neutrophilic inflammation?, Clinical Science, 1995, 88 (3), 331-336 [108] M J Banez, M I Geluz, A Chandra, T Hamdan, O S Biswas, and N S Bryan, A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health, Nutrition Research, 2020, 78, 11-26 [109] K.-J Yun, D.-J Koh, S.-H Kim, S J Park, J H Ryu, and D.-G Kim, Antiinflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation, Journal of agricultural and food chemistry, 2008, 56 (21), 10265-10272 ... thử nghiệm hoạt tính sinh học dẫn xuất tổng hợp Nội dung luận án - Tổng hợp dẫn xuất sulfonamide chứa khung pyrazole từ 4- hydrazinylbenzenesulfonamide dẫn xuất chalcone - Tổng hợp dẫn xuất sulfonamide. .. đề tài "Tổng hợp thử nghiệm hoạt tính sinh học số dẫn xuất sulfonamide sulfonylurea" với mục tiêu tổng hợp dẫn xuất sulfonamide sulfonylurea có hoạt tính sinh học cao ứng dụng y học, góp phần... pháp thử nghiệm hoạt tính sinh học 2.4.7.1 Phương pháp thử nghiệm hoạt tính kháng vi sinh vật - Thử nghiệm hoạt tính kháng vi sinh vật kiểm định với 33 dẫn xuất sulfonamide khung pyrazole dẫn xuất