1. Trang chủ
  2. » Giáo Dục - Đào Tạo

PHƯƠNG PHÁP KHỬ DẠNG VÔ ĐỊNH - TOÁN THPT

30 807 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 761,74 KB

Nội dung

PHƯƠNG PHÁP KHỬ DẠNG VÔ ĐỊNH - TOÁN THPT

WWW.MATHVN.COM Gi i h n d ng gi i h ng tr c ti ng gi i h ih ih nd ph ng v nh c bi , ta nh c a gi i h n ng g , , , , i dung t ng d ng c th I GI I H N D NH 0 i h n c d u v i bi u th Gi i h n d nh i v t t ph ih nb gi i h n b t nh ng gi i h ng g p nh t i h n d kh ih nh ih nd h c sinh k nh 0 ch n cho n d ng 0 ih nc Nh n d ng gi i h nh gi c xem n 0 cd cd nk , h c sinh c nh N u gi i h nh gi i h n p B i v y vi c nh n d ng cho h m c ph i iv id nh , vi c nh n d c sinh ng g p gi i h n : f(x) x g(x) lim x www.MATHVN.com lim f(x) = lim g(x) = x x0 x x0 WWW.MATHVN.COM f(x) g(x) lim ng h p x x Th c t h c sinh hay g m t s f(x0 ) = g(x0 ) = c sinh ph i th c hi chuy n v 0 gi i h n b ng d nh Khi gi ng d h c sinh vi c nh n d ts : f(x) x g(x) lim x nh n m nh cho lim f(x) x ho c lim g(x) x x x0 ng h 0 nd i ng : u chung c a nh : L1 = lim x ih x-2 x +1 i: L1 = lim x lim : L2 = x x-2 2-2 = x +1 22 x+2 x2 - i: L2 = lim x : L3 = lim x lim(x+2) = 1+2 = x lim(x - 1) = 12 - = x+2 = x2 - 1 x x x i: L = lim x x x = lim x www.MATHVN.com (x-1)(x 2) (x 1)(x+1) lim x (x-2) 1-2 (x+1) 1+1 lim x x 3x +2 x2 1 2 WWW.MATHVN.COM D 0 nh uv i c th sau : f(x) g(x) 0) Lo i : lim x x Kh d v = g(x0) = nh b t x0) t Gi s : f(x) = (x x0).f1 (x - x )f1 (x) f (x) f(x) lim lim lim x x0 g(x) x x0 (x - x )g (x) x x0 g (x) 1 f1 (x) v n g1 (x) N u gi i h n lim x x d x0).g1 nh 0 pl n nh ng : : L4 = lim x 2x - 5x +2 x +x - i: t v chung : x - 2x - 5x +2 (x - 2)(2x - 1) lim x +x - x (x - 2)(x + 3) 2x - 2.2 = lim x x+3 L4 = lim x V y L4 5 : L5 = lim x x - 3x +2 x - 4x + i: x - 3x +2 (x - 2)(x - 1) lim - 4x + x x 2x (x - 2)2 x-1 = lim x 2x-2 L5 = lim i h n c a t b ng 1, gi i h n c a m u b ng 0) V y L4 www.MATHVN.com WWW.MATHVN.COM : L6 lim x x+x +x3 + +x n - n (m, n x+x +x3 + +x m - m i : Ta s N* ) v chung : x 1b x + x2 + x3 + + xn n = (x 1) + (x2 1) + (x3 - 1) + + (xn - 1) x + x2 + x3 + + xm m = (x L6 x+x +x3 + +x n - n x+x +x3 + +x m - m lim x 1) + (x2 1) + (x3 - 1) + + (xm - 1) (x- 1)+(x - 1)+(x3 - 1)+ +(x n - 1) (x- 1)+(x - 1)+(x - 1)+ +(x m - 1) lim x (x- 1) + (x + 1) + + (x n-1+ x n-2 + + x +1) lim x (x- 1) + (x + 1) + + (x m-1+ x m-2 + + x +1) + (x + 1) + + (x n-1+ x n-2 + + x +1) 1 + (x + 1) + + (x m-1 + x m-2 + + x +1) lim x + (1 +1) + + (1n-1+ 1n-2 + + +1) + (1 +1) + + (1m-1 + 1m-2 + + +1) n(n + 1) m(m + 1) 2 n m V y L6 : L7 n(n + 1) m(m + 1) n(n + 1) m(m + 1) 2x - 5x3 +3x + x - 1 3x - 8x + 6x - lim x i: (x-1)(2x - 3x +1) 2x - 5x +3x + x - = lim L7 = lim x 3x - 8x + 6x - x (x-1)(3x - 5x +x+1) 2x - 3x +1 (x-1)(2x - x -1) = lim = lim x 3x - 5x + x +1 x (x-1)(3x - 2x -1) 2x - x -1 (x -1)(2x+1) = lim = lim x 3x - 2x -1 x (x -1)(3x+1) 2x+1 2.1+1 = lim = = x 3x+1 3.1+1 www.MATHVN.com WWW.MATHVN.COM V y L7 = K t lu n: gi x - x0 v h p lo iv ih Ph i n m v ng th cb f(x) = ax + bx + c = (x - x ) ax - t : n b ng th - b = (a - b)(an -1+ an - c b c ba c , ( f(x0) = 0) x0 , h c sinh c n nh n-2 + bn - 1), n N* n an + bn = (a + b)(an -1- an - 2b - abn - 2+ bn - ng th c t h c sinh d nh , c n l ng h p c th n n-1 n-2 ng h c bi t : x - = (x - 1)(x + x Tu ph mt im kh d ng i h n b ng ta v n g p gi i h n d i gi i h nh u) T gi i h n c nh m pt n 0 p t luy n x 3x 1) lim x x 4x (1 x)(1 2x)(1 3x) x 2) lim x x100 2x 3) lim 50 x x 2x 4) lim xn x f(x) g(x) Lo i : xlim x u v i bi u th c (g i t tr x - x0 kh i h n b ng Bi u th c ch www.MATHVN.com (n 1) n (x 1) 0)=g(x0)= t bi u th c ch th p) ng c a u p hay c, nh m kh , m u hay c WWW.MATHVN.COM t uc hay nhi u l cc ih kh d nh n ( A ± B)( A ( A ± B)( A h ng th pm t cs d B) = A - B , (A 0, B 0) A B+ B2 ) =A ± B n cho h c sinh th h c sinh d nh : hai (a - b)(a + b) = a - b2 (a ± b)(a ab + b2 ) = a ± b3 ng: 3x - - x x2 - lim : L8 = x i: t u v i bi u th ng, ta c: L8 = lim x 3x - - x x2 - ( 3x - - x)( 3x - + x) (x - 4)( 3x - + x) lim x 3x - - x lim x (x - 4)( 3x - + x) x+1 lim x (x + 2)( 3x - + x) V y L8 = www.MATHVN.com (x - 2)(-x + 1) x (x - 2)(x + 2)( 3x - + x) 2+1 16 (2 + 2)( 3.2-2+2) lim 16 WWW.MATHVN.COM 9: L9 lim x x+2 x+5 i: L9 lim x ( x+2 1)( x+2 1) ( x+5 2) x+2 lim x+5 = xlim1 = lim x x ( x+5 2)( x+5 2) ( x+2 1) (x + - 1)( x+5 2) (x + - 4)( x+2 1) x+5 x+2 lim1 x (x + 1)( x+5 2) (x + 1)( x+2 1) 2 V y L9 = n 10 : L10 lim m x x -1 , (m, n N* ) x -1 i: n L10 lim m x x -1 x -1 ( n x - 1) ( n x ) n-1 +( n x ) n-2 + + n x +1 ( m x ) m-1 +( m x ) m-2 + + m x +1 = lim ( x - 1) ( m x ) m-1 +( m x ) m-2 + + m x +1 ( n x ) n-1 +( n x ) n-2 + + n x +1 m x (x - 1)(m x m-1 +m x m-2 + +m x +1) (x - 1)( n x n-1 + n x n-2 + + n x +1) = lim x m = lim x V y x m-1 +m x m-2 + +m x +1 m n n-1 n n-2 x + x + + n x +1 n L10 = m n K t lu n: u th d ih hi u.Vi www.MATHVN.com y u gi i h n c nh bi u th ch cs t c, WWW.MATHVN.COM iv ih u th nk nh ih uy i bi u th c c ng k nh i bi n s cho l i gi i ng n g gi N p t luy n 1) lim x3 x x x 2) lim x 4) lim a x 6) lim x x f(x) g(x) iv m u(x) n v(x) f(x) = lim ,(m u(x ) x g(x) x x0 g(x) L= lim x Ta bi n a 0)=g(x0)= S d ng thu p Ch ng h bi u th x2 x x2 n ax 5) lim x x x0 x x n x 3x 2 x b a b 3) lim 2 x a x a Lo i 3: lim x2 n h v(x ) = 0,g(x ) = 0) i: m u(x) - c + c - n v(x) u(x)- n v(x) L lim lim x x0 x x0 g(x) g(x) m u(x) - c n v(x) - c = lim lim x x0 x x0 g(x) g(x) m T i h n L1 b lim x x0 m u(x) g(x) -c n , L2 lim x x0 v(x) - c g(x) c p ng : 11 : L11 www.MATHVN.com lim x x+3 x+7 x 3x+2 WWW.MATHVN.COM i i: x+3 x+7 lim x x 3x+2 L11 ( x+3 2) + (2 x+7) lim x x 3x+2 x+3 2 lim = lim x x 3x+2 x x x+7 3x+2 (2 ( x+3 2)( x+3+2) = lim lim x (x 3x+2)( x+3+2) x (x = lim x x+3 lim 3x+2)( x+3+2) x (x (x x+7) x+7 ( x+7) 3x+2) x+7 ( x+7)2 (x+7) 3x+2) x+7 ( x+7) x 1 x lim (x 1)(x 2)( x+3+2) x (x 1)(x 2) x+7 ( x+7)2 = lim x 1 lim x 2)( x+3+2) (x 2) x+7 ( x+7)2 = lim x = = (x 1 (1 2)( 1+3+2) (1 2) 1+7 ( 1+7)2 1 12 V y L11 6 12 : L12 1+2x - 1+3x lim x x2 i: L12 1+2x - 1+3x lim x x2 =lim x 1+2x - (x+1) + (x+1) - 1+3x lim x x2 1+2x - (x+1) (x+1) - 1+3x +lim x x2 x2 www.MATHVN.com WWW.MATHVN.COM 1+2x - (x+1) = lim x x2 1+2x +(x+1) 1+2x +(x+1) (x+1) - 1+3x (x+1)2 ( x 1) 1+3x ( 1+3x )2 +lim x lim x lim x x (x+1)2 ( x 1) 1+3x ( 1+3x )2 (1+2x) - (x+1)2 x2 lim x 1+2x +(x+1) (x+1)3 - (1+3x) x (x+1)2 (x 1) 1+3x -1 x+3 lim 1+2x +(x+1) x (x+1)2 (x 1) 1+3x -1 1+2.0 +(0+1) 1 2 (0+1) ( 1+3x )2 ( 1+3x )2 0+3 (0 1) 1+3.0 ( 1+3.0) V y L12 K t lu n : i h n c a bi u th c ch c u gi i h n r i t m t h ng s ng ch 0) td mt ng hi u qu iv tm p C ho c v(x0)) hay m t bi u th c Vi ph i th t tinh t Thu d p t luy n 1) lim x 3) lim bx x x x 20 x Gi i h n d www.MATHVN.com 2) lim x m ax 5) lim x x x n x x nh x 11 8x 43 2x 3x 2x x 4) lim x sin x 6) lim x 4x 6x x2 c 10 WWW.MATHVN.COM V y L19 = 2x x lim x x 20 : L20 i: L20 2x x 2 x lim x (2x 4) (x 4) x lim x 4(2x 1) (x 2)(x+2) 2x x2 lim lim lim x x x x x x x x x 2 lim (x+2) 4ln 4 lim x x x lim V y L20 = 4ln2 - x e 2x lim x ln(1+x ) 21 : L21 i: L21 x e 2x lim x ln(1+x ) lim x lim x ( x 1) (e ln(1+x ) 1) ln(1+x ) 2x 2x ( x 1) (e 1) x2 e 2x lim lim x ln(1+x ) x ln(1+x ) x 1)( (1 x )2 x 1) e 2x 2x lim lim x 2x ln(1+x ) ( (1 x )2 x 1)ln(1+x ) x ( lim x ( (1 lim x 03 (1 x2 x2 x )2 1)ln(1+x ) x2 x2 lim x ln(1+x ) 1 x )2 lim x e 2x lim x 2x2 e 2x 2x 2x lim x ln(1+x ) 2x ln(1+x ) lim x 1.( 2) 3 V y L21 K t lu n : www.MATHVN.com 16 WWW.MATHVN.COM ih nd nh c hi c sinh th c u h c sinh ph i ih lu th s d ih n, b h c sinh ph i bi c ih nv m ng : ln 1+f(x) loga 1+f(x) a f(x) ef(x) v i lim f (x) lim , lim , lim , lim x x0 x x0 f(x) x x f(x) x x0 x x0 f(x) f(x) p t luy n i h n sau : 2) lim 1) x 3) lim x 5) lim x 3x 3x 1 x ln x x (1 ex )(1 cosx) 2x3 3x lim 6) x x2 esin2x esinx 5x + tg x NH Gi i h n d L 4x lim 4) x cosx II GI I H N D 9x 5x nh lim x (x f(x) x0 g(x) ) lim f(x) x x (x ) lim g(x) x x (x ) kh d t cho lu th a b c cao nh t c a t uc c u f(x) C th g(x) 1) N h k f(x), g(x) cho x v i k = max{m, n} L lim x a m x m +a m 1x m + +a1x+a v i a m ,bn bn x n +bn 1x n + +b1x+b0 y m www.MATHVN.com 0, m,n N* ng h p sau : 17 WWW.MATHVN.COM L c: x u b ng nhau), chia c t a a a a m + m + + n1 + x x n lim a m x lim x x b b b bn bn + n + + n1 + n x x x u cho xn ta +) m = n (b c c a t +) m > n (b c c a t l c: m L am bn c c a m u, k = m), chia c t a0 am a + + m1 + m x x x lim x bn b1 b0 bn + m n + m n+1 + + x x x xm am + +) m < n (b c c a t nh lim x u cho am bn xm n cc am : a am n m+1 xn x b bn x xn am n m L xlim x bn H c sinh c n v n d ng k t qu : lim f (x) lim 0, lim f (x) x x x x f (x) x x 0 ng h cc at h nc v i lim x x0 f (x) c sinh c n t t qu gi i u cho xh chia t h min{m, n} 2) N tr u th m k cc cl tc cc cao nh ch h ng cc at (m u th ng h im u t qu gi i h n d ng c c d ng : 22 : L22 www.MATHVN.com lim x 2x3 3x 5x3 18 WWW.MATHVN.COM u cho x3 i : Chia c t L22 3 x lim x x3 x3 V y L22 L22 3x 5x 2x lim x c: lim x 3x 5x 2x 3 23 : L23 lim x x x3 lim x x3 x3 x3 x lim x x3 x3 5 3x (2x 1)(3x x+2) 2x+1 4x i: L23 lim x 3x (2x 1)(3x x+2) 2x+1 4x lim x 4x 5x x+2 8x3 4x x x2 8+ x lim x lim x 12x (2x+1)(3x x+2) 4x (2x+1) x3 2 V y L23 24 : L24 lim x (x 1)(x 2)(x 3)(x 4)(x 5) (5x 1)5 i: L24 lim x (x 1)(x 2)(x 3)(x 4)(x 5) (5x 1)5 lim x 1 1 x x x x x V y L24 x 55 55 www.MATHVN.com 19 WWW.MATHVN.COM 25 : L25 x+3 x2 lim x i: Chia c t c: 1+ x+3 lim x x2 L25 x lim x x x ng h p : *) x x>0 x2 x 1+ x lim x 1+ + x x lim x + x x *) x x x0 9x x lim x 16x x L+ 26 *) x L26 lim x x x3 x x5 x x 1 x x 51 16 x x4 L+ 26 L26 x4 x2 lim x 16 x4 x2 , x x x3 x5 x3 x5 x0 lim 5x lim 5 V y L32 33 : L33 x i: x L33 tt x t lim t.tg t lim t.cotg t x lim(1 x)tg (1 t) t lim t.tg t t lim t tg t t 2 t lim t t tg 2 V y L33 p t luy n 4x 2x 1) lim x x 4x 3) lim x x 8x a x x tg 2a V GI I H N D D ng t www.MATHVN.com 3x x 4) lim tg2x.tg x 5) lim a x 2) lim x 6) lim x x e x x e 3x x NH a gi i h 27 WWW.MATHVN.COM lim f (x) x g(x) lim f (x) 1, lim g(x) x x0 Hai gi i h x0 cs d ih n d e (2) n d ng, h c sinh bi lim e n u x x f (x) 0 lim g(x) i v d ng f(x) lim x x f(x) g(x) lim g(x) e n u x0 bi cc nh e (1) x +) lim x x x0 x +) lim x x x x x x0 i gi i h n c c sinh v n d ng m f(x), g(x) tho sau (d u ki n : 1) lim f (x) a x x0 2) lim g(x) b x x0 g(x) lim f (x) x x0 ab Hai gi i h ih nd nh ng 34 : L34 lim 1+ sin2x x x i: L34 lim 1+ sin2x x www.MATHVN.com x lim 1+ sin2x x sin 2x sin 2x x lim 1+ sin2x x sin 2x sin 2x x 28 WWW.MATHVN.COM sin 2x lim 1+ sin2x x sin 2x x lim x L34 x sin 2x x sin 2x e2 3x x lim x x i: s d ng gi i h n ta bi i: (x 2) L35 3x x x lim x lim x 3x (x 2) lim x lim x lim tg t e 3x x tg2 lim tg t lim t www.MATHVN.com 4 e3 y ,x y y 2tgy tgy L35 x lim x x y t y x i: 3x (x 2) (x 2) tg2 L36 (x 2) (x 2) lim 1 (x 2) x L36 t t = sin2x) 0 : L35 x 1 x sin 2x 2x 2lim lim 1+ sin2x x h c sinh d hi e lim t tgy tgy tg y 2tgy lim t y tg y 2tgy 2tgy tgy tgy 2tgy 2tgy tg y tgy 2tgy 29 WWW.MATHVN.COM tgy 2tgy 2tgy lim y tgy 2tgy tg y tgy 2tgy lim y e L36 e lim tgy y 1 K t lu n : V id nh , vi c nh n d p, h c sinh ph i v n d ng t m t hai gi i h i bi t ih nc ch y cs d i v i h c sinh p t luy n 1) lim x x 2 cot g x x www.MATHVN.com sin x x2 x2 3) lim x x 5) lim(cos 2x) tgx 2) lim x sin x 3) lim sin x cot g x x 1 x2 6) lim sin x x cos x x 30 ... + 1) 2x - 5x3 +3x + x - 1 3x - 8x + 6x - lim x i: (x-1)(2x - 3x +1) 2x - 5x +3x + x - = lim L7 = lim x 3x - 8x + 6x - x (x-1)(3x - 5x +x+1) 2x - 3x +1 (x-1)(2x - x -1 ) = lim = lim x 3x - 5x +... x 3x - - x x2 - ( 3x - - x)( 3x - + x) (x - 4)( 3x - + x) lim x 3x - - x lim x (x - 4)( 3x - + x) x+1 lim x (x + 2)( 3x - + x) V y L8 = www.MATHVN.com (x - 2)(-x + 1) x (x - 2)(x + 2)( 3x - +... + (x3 - 1) + + (xm - 1) (x- 1)+(x - 1)+(x3 - 1)+ +(x n - 1) (x- 1)+(x - 1)+(x - 1)+ +(x m - 1) lim x (x- 1) + (x + 1) + + (x n-1+ x n-2 + + x +1) lim x (x- 1) + (x + 1) + + (x m-1+ x m-2 + +

Ngày đăng: 22/02/2014, 21:52

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w