1. Trang chủ
  2. » Giáo Dục - Đào Tạo

GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

43 1,8K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 804,11 KB

Nội dung

GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

GIẢI ĐÁP TOÁN CẤP 3 CÔNG THỨC BIẾN ĐỔI ( Trang 1 – 11 ) ĐẠO HÀM ( Trang 13 – 16 ) GIỚI HẠN ( Trang 16 – 17 ) TÍNH ĐƠN ĐIỆU CÁC BẤT ĐẲNG THỨC ( Trang 18 – 43 ) PHẦN 1 HÀM SỐ LŨY THỪA, HÀM SỐ HÀM SỐ LÔGARIT www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 2 PHẦN 1: HÀM SỐ LŨY THỪA, HÀM SỐ HÀM LÔGARIT I. CÁC CÔNG THỨC BIẾN ĐỔI 1. LŨY THỪA (Giả sử các biểu thức có nghĩa): 1) 0 1 a  2) 1 n n a a   3) m n m n a a  4)   a a     5) .a a a       6) a a a       7)   . ab a b     8) a a b b           Chú ý: +) Khi xét lũy thừa với số 0 số nguyên âm thì cơ số phải khác 0. +) Khi xét lũy thừa với số không nguyên thì cơ số phải dương. A. CÁC VÍ DỤ MINH HỌA Ví dụ 1: Tính giá trị các biểu thức sau: 1) A = 2 3 3 2 4 8  2) B = 2 1,5 3 (0,04) (0,125)    3) C =     1 1 2 4 3 0,25 1 0,5 625 2 19. 3 4              4) D = 3 2 1 2 3 2 4 .2 .2     5) E =   5 5 5 3 5 5 81. 3. 9. 12 3 . 18. 27. 6 6) F = 3 3 847 847 6 6 27 27    Giải: 1) A =     23 3 2 2 3 3 2 32 2 3 4 8 2 2 2 2 12       2) B =     3 2 2 3 2 2 3 1,5 2 3 3 2 3 2 3 1 1 (0,04) (0,125) 5 2 5 2 121 11 25 8                              3) C =         3 1 1 2 1 2 2 4 4 3 0,25 1 4 4 3 1 3 1 0,5 625 2 19. 3 2 5 19. 4 2 ( 3)                                    3 3 4 3 19 2 19 2 5 11 10 2 27 3 27                      4) D = 3 2 1 2 3 2 6 2 2 2 2 2 4 4 .2 .2 2 .2 2 16           5) E =   4 1 2 2 1 1 5 5 5 5 5 5 5 2 2 3 3 9 1 31 1 1 5 5 10 10 52 2 2 81. 3. 9. 12 3 .3 .3 .2.3 3 1 3 3 3 3 3 . 18. 27. 6 3 3 .3.2 .3 .2 .3             6) F = 3 3 847 847 6 6 27 27    . Ta áp dụng hằng đẳng thức :     3 3 3 3 a b a b ab a b      3 3 3 3 3 847 847 847 847 847 847 F 6 6 3 6 . 6 6 6 27 27 27 27 27 27                    www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 3     3 3 2 3 847 F 12 3. 36 .F 12 5F F 5F 12 0 F 3 F 3F 4 0 27                F = 3  hoặc 2 F 3F 4 0    (vô nghiệm). Vậy F = 3. Ví dụ 2: Đơn giản các biểu thức sau (giả sử các biểu thức có nghĩa): 1) A = 23 4 a a 2) B = 35 4 7 5 a b b a         3) C = 1 1 1 1 1 2 2 4 4 3 1 1 1 1 4 2 4 4 4 : . a b a b a a b b a a b a b                        4) D = 2 1 1 2 2 1 2 : a a a b b b                  5) E = 2 1 1 2 2 2 : 2 b b a b b b a a                  6) F = 2 1 1 3 3 3 3 3 : 2 a b a b b a ab                  7) G = 4 4 1 : . ab ab b ab a b a ab b ab            8) H =   2 3 3 1 1 1 2 2 2 2 2 1 1 2 2 a b a b ab a b a b                        9) I = 4 1 1 2 3 3 3 3 2 2 3 3 3 8 . 1 2 2 4 a a b b a a a ab b               Giải: 1) A = 1 1 1 9 1 3 3 2 23 4 4 4 2 . a a a a a a a                 2) B = 35 1 5 4 35 1 4 7 4 1 1 4 5 5 7 5 a b b b b b a b a a a a a b                                                                      3) C = 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 4 4 4 3 1 1 1 1 1 1 1 1 1 4 2 4 4 4 4 4 2 4 4 : . : . a b a b a a b a b b a b a b b a a a b a b a b a a b                                                         1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 4 4 4 4 1 . . . . 1 a b a a b a b a b a b a b b a b a a b a a b a b                                  4) D =       2 2 2 1 1 2 2 2 2 1 1 1 2 : 1 : . b a a a a a b a b b b b b b a b                                 5) E =       2 2 2 1 1 2 2 2 2 2 : 2 : : b b b b a b b b a b b a b a b a a a a                                        2 2 . a a a b b b a b     www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 4 6) F =         2 2 1 1 1 1 3 3 3 3 2 2 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 : 2 : . 1 a b a b ab a a a b a b ab b a ab ab ab ab a b                                7) G = 4 4 4 4 1 1 : . . . ab ab b a ab ab ab a b ab a b a ab b ab a ab ab b b ab                           . . a b a b a ab a b a ab a a ab ab b a a b b a b           8) H =   2 1 1 1 1 2 2 2 2 2 3 3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 a b a a b b a b a b a b ab a b a b a b a b a b a b                                                                              = 2 1 1 2 2 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 a b a a b b a b a b                          9) I =   1 4 1 1 1 2 2 3 33 3 3 3 3 3 2 2 2 1 1 2 3 3 3 3 3 3 3 3 8 8 2 . 1 2 . 2 4 2 4 a a b a a b b a b a a a a a ab b a a b b                                                3 3 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 2 2 2 2 . 0 2 2 2 2 2 4 a a b a a b a ab b a a a a a a b a b a ab b a ab b                                    B. BÀI LUYỆN Bài 1: Tính giá trị các biểu thức sau: 1) A = 2 3 5 2 32        2) B = 3 3 2 2 2 3) C = 1 5 13 7 1 1 2 3 3 2 4 4 2 3 .5 :2 : 4: 5 .2 .3                                        4) D = 7 2 4 0,75 7 6 (0,2)               5) E = 7 4 3 4 5 2 ( 18) .2 .( 50) ( 225) .( 4) .( 108)      6) F = 3 1 3 4 2 2 3 2 0 2 3 2 .2 5 .5 (0,01) .10 10 :10 (0,25) 10 (0,01)             Bài 2: Đơn giản các biểu thức sau (giả sử các biểu thức có nghĩa): 1) A = 3 3 a a a 2) B =   5 3 5( 5 1) 2 2 1 2 2 1 .a a a     3) C = 1 9 1 3 4 4 2 2 1 5 1 1 4 4 2 2 a a b b a a b b        4) D = 3 3 6 6 a b a b   www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 5 2. LÔGARIT: Giả sử các biểu thức có nghĩa  log a b có nghĩa khi 0 1 0 a b          1) log 1 0 a  2) log 1 a a  3) log log log ( ) a a a b c bc   4) log log log a a a b b c c   5) log a b a b  6) log log log log 1 log log a a a a a a b b b b b b                  7) 1 log .log 1 log log log .log log log log log a b a b a b a a b a b a b a b c c c c b              Chú ý: +) Lôgarit thập phân : 10 log log lg b b b   +) Lôgarit tự nhiên ( lôgarit Nêpe) : log ln e b b  ( 2,71828 e  ) A. CÁC VÍ DỤ MINH HỌA Ví dụ 1: Tính giá trị các biểu thức sau: 1) A =   3 3 2 2 log log 2 2) B = 3 6 log 3.log 36 3) C = 1 25 3 1 log 5.log 27 4) D =   5 3 3 2log 3 9 5) E= 1 1 log 27 log 81 1 125 2 9 5 25   6) F =   log 2 log 27 9 8 3 2 2 log 27 2   7) G =   log 6 log 8 ln3 5 7 lg 25 49 e   8) H = 1 1 log 3 log 2 log99 6 8 9 4 10  9) I = log 5 log 36 2log 71 3 9 9 lg 81 27 3         10) J = 7 4 log 2 0,25 0,5log 1 2log 6 9 2 7 4 36 81     11) K = 3 2 log (log 8) 12) L =     2013 4 2 0,25 9 4 log log (log 256) log log (log 64)  13) M 3 4 5 6 7 8 log 2.log 3.log 4.log 5.log 6.log 7  14) N 0 0 0 0 lg(tan1 ) lg(tan 2 ) lg(tan88 ) lg(tan89 )      Giải: 1) A =   1 3 2 6 3 3 3 3 3 2 2 3 2 2 1 2 1 log log 2 log log 2 log . log log 3 2 6 3 9                    2) B = 2 1 2 3 6 6 6 log 3.log 36 log 36 log 6 4    3) C = 1 25 3 5 3 3 1 2 3 5 1 3 15 log 5.log log 5.log 3 ( 5). .log 5.log 3 27 2 2              4) D =   3 3log 5 3 3 2 2 log 5 2log 3 3 3 5 9 3 3 5          5) E   2 3 4 1 1 log 27 log 81 2 8 1 1 1 125 2 2 9 1 log 3 log 3 log log 1 2log 3 log 3 5 5 1 3 5 3 3 5 5 2 9 5 5 3 3 25 5 5 5 5.5 5.9 45                www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 6 6) F =     3 3 log 3 log 2log 2 log 2 log 27 log 3 3 3 23 9 8 2 2 2 3 3 2 2 3 2 2 3 2 2 log 27 2 log 3 2 log 3 2                         3 3 2 log 2 log 3 3 2 2 1 3 2 2 3 2 2 3 2 2 log 3 2 log 2 3 log 3 2 2 1                           7) G =       2 2 log 6 log 8 log 6 log 8 log 6 log 8 5 7 ln3 2 2 5 7 5 7 lg 25 49 lg 5 7 3 lg 5 7 3 e                       2 2 2 lg 6 8 3 lg10 3 2 3 1          8) H =     2 2 1 1 2 2 log 6 log 8 log 3 log 2 log 6 log 8 3 2log99 2 2 6 8 3 2 9 4 10 3 2 99 3 2 99 6 8 99 1             9) I =     2 2log 71 log 5 log 6 log 5 log 36 2log 71 2 3 2 4 3 3 9 9 3 3 lg 81 27 3 lg 3 3 3                        4 3 log 5 log 6 log 71 4 3 3 3 3 lg 3 3 3 lg 5 6 71 lg 29 71 lg100 2                 10) J       7 7 2 1 4 4 log 2 0,25 .log 1 2log log 2 0,25 0,5log1 2log 6 2 2 42 6 9 2 2 3 7 7 4 36 81 2 6 3          2 7 log 6 4 log 7 4log 3 2 4 2 3 4 3 6 4 3 7 7 3 2         11) K =   3 3 2 3 2 3 log (log 8) log log 2 log 3 1    12) L =       8 3 2013 4 2 0,25 9 4 2013 4 2 0,25 9 4 log log (log 256) log log (log 64) log log (log 2 ) l og log (log 4 )          2 2 3 2013 4 0,25 9 2013 2013 2013 2 1 2 1 3 1 log log 8 log log 3 log log 2 log log log 1 0 2 2 2                                 13) M 3 4 5 6 7 8 8 7 6 5 4 3 8 1 log 2.log 3.log 4.log 5.log 6.log 7 log 7.log 6.log 5.log 4.log 3.log 2 log 2 3     14) N 0 0 0 0 lg(tan1 ) lg(tan 2 ) lg(tan88 ) lg(tan89 )      0 0 0 0 0 0 0 lg(tan1 ) lg(tan89 ) lg(tan 2 ) lg(tan88 ) lg( tan 44 ) lg(tan 46 ) lg(tan 45 )                             0 0 0 0 0 0 0 lg tan1 .tan89 lg tan 2 .tan88 lg tan 44 .tan 46 lg tan 45              0 0 0 0 0 0 0 lg tan1 .cot1 lg tan 2 .cot 2 lg tan 44 .cot 44 lg tan 45      lg1 lg1 lg1 lg1 0 0 0 0 0            Ví dụ 2: Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa): 1) A =   2 3 4 5 log a a a a 2) B =     log log 2 log log log 1 a b a ab b b a b b a     3) C = 3 5 1 lg log a a a 4) D =         2 2 4 2 2 2 3 2 2 2 log log 1 1 log 2 log log 2 log . 3log 1 1 a a a a a a a a      www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 7 Giải: 1) A =   1 1 16 4 14 4 4 2 3 2 3 2 24 5 5 5 5 5 14 log log . . log . log . log 5 a a a a a a a a a a a a a a a a                                    2) B      1 log log 2 log log log 1 log 2 log .log log .log 1 log a b a ab b a a b ab b a b a b b a b b a b a b                     2 2 log 1 log 2log 1 1 1 log 1 . 1 1 log log log a a a ab a a a b b b a b b ab                    2 2 log 1 log 1 log1 . 1 1 . 1 log 1 1 log log 1 log log 1 log a a a a a a a a a b b b b b b b b b                    3) C = 1 5 5 2 1 33 5 102 1 1 1 3 3 3 3 1 1 lg log lg log . lg log lg log lg lg 1 10 10 a a a a a a a a a a                4) D =             2 2 4 2 2 2 2 2 2 2 2 3 2 2 2 2 log log 1 2 1 log 2 log log 1 2log log . log 1 8log 2 log . 3log 1 1 3log . 3log 1 1 a a a a a a a a a a a a a a             2 2 2 2 2 2 9log 3log 1 1 9log 3log 1 a a a a       Ví dụ 3: Cho log 3 a b  ; log 2 a c   . Tính log a x biết: 1) 3 2 x a b c  2) 4 3 3 a b x c  3) 2 3 3 3 log a a bc x a cb  Giải: Cho log 3 a b  ; log 2 a c   1) Với 3 2 x a b c      1 3 2 3 2 2 1 1 log log log log log 3 2log log 3 2.3 . 2 8 2 2 a a a a a a a x a b c a b c b c              2) Với 4 3 3 a b x c    1 4 3 4 3 3 3 1 1 log log log log log 4 log 3log 4 .3 3. 2 1 3 3 a a a a a a a a b x a b c b c c               3) Với 2 3 3 3 log a a bc x a cb  1 5 5 5 8 3 2 2 3 3 3 6 3 3 2 1 1 8 33 3 3 6 3 log log log log log log log a a a a a a a a bc a b c a c x a b c a cb a b c b          5 8 5 5 8 5 log log .3 2 8 3 3 6 3 3 6 a a b c          www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 8 Ví dụ 4: Hãy biểu diễn theo a ( hoặc cả b hoặc c) các biểu thức sau: 1) A = 20 log 0,16 biết 2 log 5 a  2) B = 25 log 15 biết 15 log 3 a  3) C = log 40 biết 2 3 1 log 5 a        4) D = 6 log (21,6) biết 2 log 3 a  2 log 5 b  5) E = 35 log 28 biết 14 log 7 a  14 log 5 b  6) F = 25 log 24 biết 6 log 15 a  12 log 18 b  7) G = 125 log 30 biết lg3 a  lg2 b  . 8) H = 3 5 49 log 8 biết 25 log 7 a  2 log 5 b  . 9) I = 140 log 63 biết 2 log 3 a  ; 3 log 5 b  ; 2 log 7 c  10) J = 6 log 35 biết 27 log 5 a  ; 8 log 7 b  ; 2 log 3 c  Giải: 1) A = 20 log 0,16 biết 2 log 5 a  . Ta có: A = 20 log 0,04 2 3 2 20 3 2 2 2 2 log 1 3log 5 2 1 3 5 log 5 log (2 .5) 2 log 5 2 a a         2) B = 25 log 15 biết 15 log 3 a  . Ta có:   15 3 3 3 1 1 1 1 log 3 log 5 1 log 3.5 1 log 5 a a a a           B =   3 3 3 25 2 3 3 3 1 1 log 15 log (3.5) 1 log 5 1 log 15 1 log 25 log 5 2log 5 2 1 2. a a a a a           3) C = log 40 biết 2 3 1 log 5 a        . Ta có: 1 3 2 2 2 3 1 2 2 1 2 3 log log 5 log 5 log 5 3 2 5 a a                C = 3 2 2 2 2 2 2 3 3 log 40 log (2 .5) 3 log 5 6 3 2 log40 3 log 10 log (2.5) 1 log 5 2 3 1 2 a a a a            4) D = 6 log (21,6) biết 2 log 3 a  2 log 5 b  Ta có: D =     2 3 2 2 2 2 6 2 2 2 2 .3 log log 21,6 2 3log 3 log 5 2 3 5 log (21,6) log 6 log 2.3 1 log 3 1 a b a           5) E = 35 log 28 biết 14 log 7 a  14 log 5 b  Ta có:   14 7 7 1 1 log 7 log 2.7 1 log 2 a      7 1 1 log 2 1 a a a       7 7 14 7 7 7 7 log 5 log 5 1 log 5 log 5 (1 log 2) . 1 log 7.2 1 log 2 a b b b b a a                   E = 2 7 7 7 35 7 7 7 1 1 2. log 28 log (7.2 ) 1 2log 2 2 log 28 log 35 log (7.5) 1 log 5 1 a a a b a b a             www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 9 6) F = 25 log 24 biết 6 log 15 a  12 log 18 b  Ta có: 2 2 2 6 2 2 log 15 log 3 log 5 log 15 log 6 1 log 3 a      (1)     2 2 2 2 12 2 2 2 2 log 2.3 log 18 1 2log 3 log 18 log 12 2 log 3 log 2 .3 b       (2) Từ (2) 2 2 2 2 1 2 (2 log 3) 1 2log 3 ( 2)log 3 1 2 log 3 2 b b b b b             Từ (1)        2 2 2 2 1 2 2 1 log 5 1 log 3 log 3 1 log 3 1 2 2 b b a ab a a a a a b b                  F =   3 2 2 2 25 2 2 2 2 1 2 3 log 2 .3 log 24 3 log 3 5 2 log 24 2 1 log 25 log 5 2log 5 4 2 2 2 2. 2 b b b b a ab b a ab b                  7) G = 125 log 30 biết lg3 a  lg2 b  . Ta có: 10 lg2 lg 1 lg5 lg5 1 5 b b               G =       125 3 lg 3.10 lg30 1 lg3 1 log 30 lg125 3lg5 3 1 lg 5 a b        8) H = 3 5 49 log 8 biết 25 log 7 a  2 log 5 b  . Ta có: 2 2 2 25 2 2 2 log 7 log 7 log 7 log 7 log 7 2 log 25 2log 5 2 a ab b        H = 3 2 2 2 3 2 1 5 3 2 3 2 2 49 7 log log 2log 7 3 49 2.2 3 12 9 8 2 log 1 1 8 log 5 log 5 log 5 3 3 ab ab b b         9) I = 140 log 63 biết 2 log 3 a  ; 3 log 5 b  ; 2 log 7 c  Ta có : 2 2 3 log 5 log 3.log 5 ab    I =     2 2 2 2 2 140 2 2 2 2 2 log 3 .7 log 63 2log 3 log 7 2 log 63 log 140 2 log 5 log 7 2 log 2 .5.7 a c ab c           10) J = 6 log 35 biết 27 log 5 a  ; 8 log 7 b  ; 2 log 3 c  2 2 2 27 2 2 2 2 2 8 2 2 log 5 log 5 log 5 log 5 log 5 3 log 27 3log 3 3 log 7 log 7 log 7 log 7 3 log 8 3 a ac c b b                    J = 2 2 2 6 2 2 log 35 log 5 log 7 3 3 log 35 log 6 1 log 3 1 ac b c        Ví dụ 5: Tính giá trị của biểu thức: 1) A = 3 log b a b a biết log 3 a b  . 2) B = 1 9 1 3 4 4 2 2 1 5 1 1 4 4 2 2 a a b b a a b b        biết 2013 2 a   ; 2 2012 b   www.MATHVN.com www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 10 Giải: 1) A = 3 log b a b a biết log 3 a b  . A = 1 1 3 3 2 1 1 1 1 log log log 1 1 3 log 2 log 1 3log 2log 2 2 b b b a a a b a b a b b a a b b a b a a                           2log 2log 3 1 1 1 2 3 3 3 log 2 3 log 2 log 2 3 log 2 3 1 1 3 3 2 3 2 log a a a a a a a b b b b b b b                       2) B = 1 9 1 3 4 4 2 2 1 5 1 1 4 4 2 2 a a b b a a b b        biết 2013 2 a   ; 2 2012 b   B =             1 1 1 9 1 3 2 2 4 2 4 4 2 2 1 5 1 1 1 1 4 4 2 2 4 2 1 1 1 1 2013 2 2 2012 1 1 1 a a b b a a b b a b a b a a b b a a b b                           Ví dụ 6: Chứng minh rằng (với giả thiết các biểu thức đều có nghĩa): 1) log log log ( ) 1 log a a ac a b c bc c    2) log log c a b b a c 3) Nếu 2 2 4 9 4 a b ab   thì 2 3 lg lg lg 4 2 a b a b    4) Nếu 2 2 4 12 a b ab   thì 2013 2013 2013 2013 1 log ( 2 ) 2log 2 (log log ) 2 a b a b     5) Nếu 1 1 lg 10 b a   ; 1 1 lg 10 c b   thì 1 1 lg 10 a c   6) Nếu 12 log 18 a  ; 24 log 54 b  thì: 5( ) 1 ab a b    7) 2 2 log log a a b c c b  8) Trong 3 số: 2 2 log ;log a b b c c a b c 2 log c a b a luôn có ít nhất một số lớn hơn 1. Giải: 1) log log log ( ) 1 log a a ac a b c bc c    . Ta có:     log log log log log ( ) 1 log log log log a a a a ac a a a a bc b c bc bc c a c ac       (đpcm) 2) log log c a b b a c . Đặt log b c a t  log log log log log log t b b b t t t t b b b c c a a a a a a a c c b c b b a               (đpcm) 3) Nếu 2 2 4 9 4 a b ab   thì 2 3 lg lg lg 4 2 a b a b    Ta có:   2 2 2 2 2 2 2 3 4 9 4 4 12 9 16 2 3 16 4 a b a b ab a ab b ab a b ab ab                     2 2 3 2 3 2 3 lg lg lg lg 2lg lg lg lg 4 4 4 2 a b a b a b a b ab a b                  (đpcm) www.MATHVN.com www.DeThiThuDaiHoc.com [...]... log 2012 20 13 2     2 3 3 3 4 3) 3  1 5 6)   7 5) log 2 3 log3 11 1 3 2log 2 5 log 1 9 10) 2 2 2 2  5 2 3 3 1 1 9) log 0,4 2 log 0,2 0 ,34 1 1 log 1 3 80 2 15  2 15) log 3 4 log10 11 11) 3log 6 1,1 7 log 6 0,99 12) log 1 14) log 13 150 log17 290 Giải: 1)  0, 01   2)   2 3) 4  3 2 2 1000     2 3  1 3 3 3 1  0,01  3  102 ... 5  3x  m 2) 4 x  m.2 x  m  3  0 Giải: 1) 3x  3  5  3x  m (*) Xét hàm số : f ( x)  3x  3  5  3x với x  log 3 5  (*) có nghiệm khi : 3x ln 3 Ta có : f '( x)  x 2 3 3  2 5 3 Ta có : lim f ( x)  lim x    min x ;log3 5  3x ln 3 3x ln 3 x   x  2  3 5  3x  3 x  3 x  3  5  3 x   0  min x ;log3 5  5  3x  3x  33 x  1  x  0  3x  3  5  3x  3 ...  2 333  10 2 3 ; 1000  1 03    Ta có:  1 2 2  3    2 2 1 4 4  3 1  3 1 ;  Ta có:  0  3  1  1; 1  1  4 3    3 2 2     2 3 1     0, 01  3 1 1 3  4 3 1  Ta có: log 3 2  log3 3  1  log 2 2  log 2 3  log3 2  log 2 3 5) log 2 3 log3 11 Ta có: log 2 3  log 2 4  2  log3 9  log3 11  log 2 3  log 2 11 Trang 18  1000 3 4) log3 2 log... đúng với x  (; log3 5] : Ta có : f '( x)  3x ln 3 x  2 3 3 2 5 3 Ta có : lim f ( x)  lim x   m  m ax x ;log3 5  3x ln 3 3x ln 3 x   x  2  3 5  3x  3 x  3 x  3  5  3 x   0  m ax x ;log3 5  5  3x  3x  33 x  1  x  0  3x  3  5  3x  3  5  bảng biến thiên : f ( x)  4 Vậy bất phương trình đúng với x  (; log3 5] : m  4 Trang 31 www.DeThiThuDaiHoc.com... 2 .3  1  2log 2 3 1  2a    a  2  log 2 3   1  2 log 2 3  log 2 3  (1) log 2 12 log 2  22 .3  2  log 2 3 a2 3 log 2 54 log 2  2 .3  1  3log 2 3 1  3b b  log 24 54     b  3  log 2 3   1  3log 2 3  log 2 33 log 2 24 log 2  2 33  log 2 3 b 3 Từ (1) (2)  7) log 2 a 1  2a 1  3b   1  2a  b  3   1  3b  a  2   ab  5( a  b)  1 (đpcm) a  2 b 3 b...  0  x  3    TXĐ: D   \ 1; 2 ;3 7) y  log 1 ( x  3)  1 3 1 1 10  10   0 x 33 x   TXĐ: D   3;  3 33 3 3 Điều kiện : log 1 ( x  3)  1  0  log 1 ( x  3)  1  log 1 3 8) y  log 33 x 2  3x  2  4  x Điều kiện : log 3    x 2  3x  2  4  x  0  x 2  3x  2  4  x  1  x 2  3x  2  x  3 Trang 24 www.DeThiThuDaiHoc.com GV: THANH TÙNG 0947141 139 – 0925509968... (2*) 33 abc (đpcm) Ví dụ 5: Không sử dụng máy tính hãy chứng minh rằng: 5 1) 2  log 2 3  log 3 2  2 2) log 1 3  log 3 2 1  2 2 Giải: 1) 2  log 2 3  log 3 2  5 2 Áp dụng BĐT Cauchy ta được : log 2 3  log 3 2  2 log 2 3. log 3 2  2 (1) ( (1) không có dấu "  " vì log 2 3  log 3 2 ) Ta có : log 2 3  log 3 2  5 1 5  log 2 3   0 2 log 2 3 2  2 log 2 3  5 log 2 3  2  0   2 log 2 3. .. log 2 3  1 log 2 3  2   0 (*) 2 2 log 2 3  1  0 5 Mặt khác :  (2)  (*) đúng  log 2 3  log 3 2  log 2 3  2  0 2  5 Từ (1) (2)  2  log 2 3  log 3 2  (đpcm) 2 2) log 1 3  log 3 2 1  2 2 Ta có : log 1 3  log 3 2 1    log 2 3  log 3 2  2 (1) Chứng minh như ý 1) ta được : log 2 3  log3 2  2    log 2 3  log 3 2   2 (2) Từ (1) (2)  log 1 3  log 3 2 1  2 (đpcm)...   6 log6 125 3 124 1 Mà: 3    8 8 6 2 5   61  log6 2 5 6 1 log6 2  log 5 2 6  3 log6 5 2 3  5 3 5 125 Mặt khác:    3 2 8 2 31 1  B=   2 6 1 log6 2  log 5 2 6 3 31 3 124  2 8 3 31 0 2 Ví dụ 3: Sắp xếp các số sau theo thứ tự giảm dần: 1) 2 ;  23  log 64 5 4  log9 2 ; 2 6 ; 23 2) 2 log 4 5 ; log 3  ; log 4 4 2 3 ; log 9 1 4 Giải: 1) 2 ;  23  Ta có: log64 5... 3 (2)  m  3 Từ (1) (2), suy ra bất phương trình (2*) có nghiệm khi:  m  6 Ví dụ 12: Tìm m để bất phương trình: 3x  3  5  3x  m có nghiệm với x  (; log3 5] 1) 2) ( m  1).4 x  2 x 1  m  1  0 có nghiệm với x   3) m.9 x  (2m  1).6 x  m.4 x  0 có nghiệm với x  [0;1] Giải: 1) 3x  3  5  3x  m với x  (; log3 5] (*) Xét hàm số : f ( x)  3x  3  5  3x với x  log3 . SỐ MŨ VÀ HÀM SỐ LÔGARIT www .MATHVN. com www.DeThiThuDaiHoc .com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook .com/ giaidaptoancap3 Trang.            www .MATHVN. com www.DeThiThuDaiHoc .com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook .com/ giaidaptoancap3 Trang

Ngày đăng: 22/02/2014, 21:42

HÌNH ẢNH LIÊN QUAN

Ví dụ 1: Không dùng bảng số và máy tính hãy so sánh các cặp số sau: - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
d ụ 1: Không dùng bảng số và máy tính hãy so sánh các cặp số sau: (Trang 18)
      bảng biến thiên: - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên: (Trang 25)
           bảng biến thiên: - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên: (Trang 26)
 ta có bảng biến thiên: - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
ta có bảng biến thiên: (Trang 31)
Dựa vào bảng biến thiên: (2**)  m 1. Vậy bất phương trình đúng với x khi: m 1                      - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
a vào bảng biến thiên: (2**)  m 1. Vậy bất phương trình đúng với x khi: m 1 (Trang 32)
  bảng biến thiên: - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên: (Trang 32)
Từ bảng biến thiên ta có: )f x với x hay e x 1 x với x (đpcm)      - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên ta có: )f x với x hay e x 1 x với x (đpcm) (Trang 33)
Từ bảng biến thiên ta có: )f x với  - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên ta có: )f x với  (Trang 34)
Từ bảng biến thiên ta có: )f x với x hay - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên ta có: )f x với x hay (Trang 35)
Từ bảng biên thiên ta có: x 2ln 2 2 0 - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biên thiên ta có: x 2ln 2 2 0 (Trang 36)
Từ bảng biến thiên ta có: )f x với xR hay x ln x 1 x2  1 1 x2 với xR (đpcm) - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
b ảng biến thiên ta có: )f x với xR hay x ln x 1 x2  1 1 x2 với xR (đpcm) (Trang 37)
Bài 1: Không dùng bảng số và máy tính hãy so sánh các cặp số sau: - GIẢI ĐÁP TOÁN CẤP 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
i 1: Không dùng bảng số và máy tính hãy so sánh các cặp số sau: (Trang 42)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w