1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3 cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ

78 66 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 78
Dung lượng 4,2 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC QUY NHƠN ĐẶNG THỊ THU NGUYỆT NGHIÊN CỨU TỔNG HỢP VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU Al2O3:Cr3+ NHẰM ỨNG DỤNG TRONG ĐÈN LED PHÁT XẠ ÁNH SÁNG ĐỎ Chuyên ngành: Vật lý chất rắn Mã số: 8440104 Ngƣời hƣớng dẫn 1: TS NGUYỄN VĂN QUANG Ngƣời hƣớng dẫn 2: TS NGUYỄN TƢ download by : skknchat@gmail.com LỜI CAM ĐOAN Tôi xin cam đoan kết khoa học đƣợc trình bày luận văn thành nghiên cứu thân suốt thời gian làm nghiên cứu chƣa xuất công bố tác giả khác Các kết đạt đƣợc xác trung thực Quy Nhơn, ngày 10 tháng năm 2019 Ngƣời cam đoan Đặng Thị Thu Nguyệt download by : skknchat@gmail.com LỜI CẢM ƠN Lời tơi xin trân trọng bày tỏ lịng biết ơn chân thành sâu sắc đến TS Nguyễn Văn Quang - Trƣờng Đại học sƣ phạm Hà Nội TS Nguyễn Tƣ - Trƣờng Đại học Phenikaa nhiệt tình hƣớng dẫn cung cấp kiến thức khoa học, kinh nghiệm quí giá để giúp tơi hồn thành tốt luận văn Tơi xin trân trọng cảm ơn Ban Giám Hiệu, q thầy Trƣờng Đại học Phenikaa đặc biệt PGS TS Phạm Thành Huy, ngƣời tận tình giúp đỡ tạo điều kiện thuận lợi suốt trình thực đề tài Trƣờng Đại học Phenikaa (Hà Đông - Hà Nội) Tôi xin chân thành cảm ơn Ban Giám Hiệu Trƣờng Đại học Quy Nhơn, Ban Chủ nhiệm khoa Thầy Cơ giáo Khoa Vật lí - Trƣờng Đại Học Quy Nhơn trang bị cho kiến thức giúp đỡ suốt thời gian qua Tôi xin gửi lời cảm ơn đến Ban Giám Hiệu, thầy cô giáo Trƣờng Nguyễn Viết Xn tạo điều kiện cho tơi tham gia khóa học Cuối xin gửi lời cảm ơn chân thành bạn bè học viên lớp cao học Vật Lý chất rắn –Khóa 20 động viên chia sẻ, giúp tơi khắc phục khó khăn q trình học tập, nghiên cứu hồn thành luận văn Xin trân trọng cảm ơn ! Quy Nhơn, ngày 10 tháng năm 2019 Tác giả luận văn Đặng Thị Thu Nguyệt download by : skknchat@gmail.com MỤC LỤC LỜI CAM ĐOAN LỜI CẢM ƠN MỤC ỤC DANH MỤC CÁC HÌNH DANH MỤC CÁC BẢNG MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu Đối tƣợng phạm vi nghiên cứu Phƣơng pháp nghiên cứu CHƢƠNG TỔNG QUAN 1.1 Vật liệu nano 1.1.1 Định nghĩa 1.1.2 Phân loại vật liệu nano: 1.1.3 Đặc trƣng vật liệu nano 1.1.4 Phƣơng pháp chế tạo vật liệu nano 1.2 Cấu trúc tinh thể vật liệu Al2O3 1.2.1 Cấu trúc mạng tinh thể vật liệu Al2O3 1.2.2 Cấu hình điện tử ion Cr3+ 12 1.3 Cơ sở quang học vật liệu 12 1.3.1 Hiện tƣợng phát quang 12 1.3.2 Cơ chế phát quang vật liệu 14 1.3.3 Các đặc trƣng bột huỳnh quang 17 1.4 Sự chuyển mức lƣợng ion kim loại chuyển tiếp lớp dn 19 1.4.1 Giản đồ Tanabe – Sugano 19 1.4.2 Giản đồ Tanabe-Sugano cho cấu hình d3 21 1.5 Các phƣơng pháp tổng hợp vật liệu huỳnh quang 23 download by : skknchat@gmail.com 1.5.1 Phƣơng pháp đồng kết tủa [14] 23 1.5.2 Phƣơng pháp sol- gel 25 1.5.3 Phƣơng pháp thủy nhiệt 26 1.5.4 Phƣơng pháp khuếch tán nhiệt 27 1.6 Tổng quan tình hình nghiên cứu vật liệu Al2O3:Cr3+ 28 Chƣơng THỰC NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU 32 2.1 Mở đầu 32 2.2 Thực nghiệm 32 2.2.1 Hóa chất thiết bị chế tạo mẫu 32 2.2.2 Quy trình chế tạo vật liệu Al2O3:Cr3+ phƣơng pháp đồng kết tủa 36 2.3 Một số phƣơng pháp nghiên cứu tính chất vật liệu 40 2.3.1 Phƣơng pháp nghiên cứu tính chất quang phép đo phổ huỳnh quang 40 2.3.2 Phƣơng pháp nghiên cứu hình thái bề mặt vật liệu ảnh FESEM 41 2.3.3 Phƣơng pháp nghiên cứu cấu trúc tinh thể giản đồ nhiễu xạ tia X (XRD) 41 2.3.4 Phƣơng pháp đo thông số điện quang LED 43 Chƣơng KẾT QUẢ VÀ THẢO LUẬN 44 3.1 Mở đầu 44 3.2 Nghiên cứu hình thái bề mặt vật liệu ảnh FESEM 44 3.3 Nghiên cứu cấu trúc tinh thể giản đồ nhiễu xạ tia X (XRD) 46 3.4 Nghiên cứu tính chất quang vật liệu Al2O3 pha tạp Cr3+ 48 3.4.1 Phổ huỳnh quang (PL) kích thích huỳnh quang (PLE) vật liệu Al2O3 pha tạp Cr3+ 48 3.4.2 Ảnh hƣởng nhiệt độ ủ mẫu lên tính chất quang vật liệu Al2O3 pha tạp Cr3+ 52 download by : skknchat@gmail.com 3.4.3 Ảnh hƣởng nồng độ pha tạp lên tính chất quang vật liệu Al2O3:Cr3+ 54 3.5 Thử nghiệm chế tạo đèn ED đỏ cách phủ bột Al2O3:Cr3+ lên chíp NUV LED 395 nm 61 KẾT LUẬN 63 DANH MỤCTÀI LIỆU THAM KHẢO 64 QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN ( bán sao) download by : skknchat@gmail.com DANH MỤC CÁC CHỮ VIẾT TẮT Kí hiệu Tên Tiếng Anh Tên Tiếng Việt CRI Color rendering index Hệ số hoàn màu EDS Energy dispersive X-ray Phổ tán sắc lƣợng spectroscopy tia X CD Compact disc Đĩa quang DVD Digtital versatile disc Đĩa Quang FESEM Field emission scanning Hiển vi điện tử quét electron microscopy phát xạ trƣờng AND Deoxyribonucleic acid Vật liệu di truyền LED Light emitting diode Điốt phát quang NUV Near Ultraviolet Tử ngoại gần PL Photoluminescence Quang phát quang PLE Photoluminescence Kích thích quang phát excitation quang Scanning electron Kính hiển vi điện tử microscopy quét UV Ultraviolet Tử ngoại XRD X-ray Diffraction Nhiễu xạ tia X SEM download by : skknchat@gmail.com DANH MỤC CÁC HÌNH Hình 1.1 Phân loại vật liệu nano: (0D) hạt nano hình cầu, cụm nano; (1D) dây, nano; (2D) màng, đĩa lƣới nano; (3D) vật liệu khối [7] Hình 1.2 Một số hình ảnh đá quý ruby 10 Hình 1.3 Cấu trúc tinh thể α-Al2O3 (corundum) 11 Hình 1.4 Sơ đồ trình huỳnh quang [20] 16 Hình 1.5 Sự truyền lƣợng từ E tới E1 [20] 16 Hình 1.6 Giản đồ Tanabe-Sugano cho cấu hình d3 [20] 21 Hình 1.7 Phổ hấp thụ ion Cr3+(3d3) oxit [20] 22 Hình 1.8 Phổ phát quang α –Al2O3:Cr3+ với λex= 365nm phổ kích phát quang α –Al2O3:Cr3+ với λem =694 nm 29 Hình 1.9 Tính chất quang vật liệu Al2O3:Cr3+ phƣơng pháp cắt laze 29 Hình 1.10 Tính chất quang vật liệu Al2O3:Cr3+ phƣơng pháp đốt cháy gel 30 Hình 2.1 Các thiết bị thí nghiệm để chế tạo bột Al2O3 pha tạp Cr3+ phƣơng pháp đồng kết tủa ủ nhiệt mơi trƣờng khơng khí: (a) cân điện tử, (b) máy khuấy từ gia nhiệt, (c) bể rung siêu âm, (d) máy quay li tâm, (e) tủ sấy (f) lò nung nhiệt độ cao Nabertherm 33 Hình 2.2 Sơ đồ quy trình tổng quát để chế tạo vật liệu huỳnh quang phƣơng pháp đồng kết tủa 36 Hình 2.3 Sơ đồ quy trình tổng hợp bột huỳnh quang Al2O3 pha tạp Cr3+ phƣơng pháp đồng kết tủa 37 Hình 2.4 Hệ huỳnh quang (Nanolog, Horiba Jobin Yvon) nguồn kích thích đèn Xenon cơng suất 450 W có bƣớc sóng từ 250 ÷ download by : skknchat@gmail.com 800 nm, viện Tiên tiến Khoa học Công nghệ (AIST), Trƣờng Đại học Bách khoa Hà Nội 40 Hình 2.5 Thiết bị FESEM-JEOL/JSM-7600F tích hợp đo FESEM EDS Viện Tiên tiến Khoa học Công nghệ (AIST)- Đại học Bách khoa Hà Nội 41 Hình 2.6 Hệ đo giản đồ nhiễu xạ tia X (D/MAX-2500/PC) 42 Viện (KICET), Hàn Quốc 42 Hình 2.7 Hệ đo thơng số điện quang Gamma Scientific RadOMA GS-1290 spectroradiometer 43 Hình Ảnh FESEM mẫu Al2O3:0,6%Cr3+ chế tạo phƣơng pháp đồng kết tủa ủ nhiệt độ khác môi trƣờng khơng khí: (a) 600 oC; (b) 1100 oC; (c) 1200 oC (d) 1400 oC 45 Hình Giản đồ nhiễu xạ tia X vật liệu Al2O3:0,6%Cr3+ chế tạo phƣơng pháp đồng kết tủa ủ nhiệt nhiệt độ khác từ 600 C đến 1500 C, thời gian môi trƣờng khơng khí 47 Hình 3 Phổ huỳnh quang vật liệu Al2O3 pha tạp 0,6%Cr3+ chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 oC với thời gian môi trƣờng không khí 49 Hình Phổ kích thích huỳnh quang mẫu Al2O3:Cr3+0,6% ủ 1200 oC với thời gian môi trƣờng khơng khí 50 Hinh Phổ huỳnh quang ứng với hai bƣớc sóng kích thích 405 nm 560 nm vật liệu Al2O3 pha tạp 0,6% Cr3+ chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 oC với thời gian mơi trƣờng khơng khí 52 download by : skknchat@gmail.com Hình 3.7 Phổ huỳnh quang kích thích 405 nm mẫu Al2O3:x%Cr3+ (x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt độ 1400 oC môi trƣờng khơng khí với nồng độ khác 55 Hình 3.8 Đƣờng biễu diễn phụ thuộc cƣờng độ huỳnh quang (kích thích 405 nm) đỉnh phát xạ 695 nm mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 oC mơi trƣờng khơng khí 56 Hình (a) Sự phát huỳnh quang nồng độ thấp; (b) dập tắt huỳnh quang nồng độ pha tạp cao [20][34] 58 Hình 3.10 Phổ huỳnh quang kích thích 560 nm mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 C mơi trƣờng khơng khí .58 Hình 3.11 Đƣờng biễu diễn phụ thuộc cƣờng độ huỳnh quang (kích thích 560 nm) đỉnh phát xạ 695 nm mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 C mơi trƣờng khơng khí 59 Hình 3.12 Phổ kích thích huỳnh quang đo đỉnh 695 nm mẫu Al2O3 với nồng độ pha tạp Cr3+ khác từ 0,2% đến 1,5% 60 Hình 3.13 Các hình ảnh thử nghiệm chế tạo đèn ED đỏ từ bột Al2O3:Cr3+ phủ lên chíp NUV LED 395 nm: (a) bột Al2O3:Cr3+, (b) chíp NUV ED 395 nm đƣợc phủ bột Al2O3:Cr3+ (c) đèn ED phát xạ đỏ nối với nguồn 61 Hình 3.14 Phổ điện huỳnh quang (a) giản đồ CIE đèn ED đỏ dƣới dòng điện 150 mA Hình chèn nhỏ hình 3.14b ảnh phát xạ thực tế đèn ED thử nghiệm 62 download by : skknchat@gmail.com 53 nm đặc trƣng cho chuyển mức 2Eg4A2g ion Cr3+ mạng tinh thể α– Al2O3 bắt đầu xuất hiên [6] Tuy nhiên, đỉnh 683 nm, 687 nm đƣợc quan sát chí cƣờng độ mạnh Điều đƣợc lý giải pha α–Al2O3 hình thành nhiệt độ này, tinh thể pha lạ tốt lên chiếm ƣu mẫu Kết phù hợp với giản đồ nhiễu xạ XRD Hình 3.2 Khi tăng nhiệt độ ủ mẫu từ 1200 C đến 1500 C, hình dạng phổ huỳnh quang gần nhƣ khơng thay đổi nhƣng cƣờng độ biến đổi rõ rệt (xem hình chèn nhỏ) Ban đầu cƣờng độ P tăng lên, đạt cực đại 1400 C giảm nhẹ 1500 C Rõ ràng nhiệt độ ủ mẫu nguyên nhân dẫn đến thay đổi phổ PL Khi nhiệt độ tăng dẫn đến hai trƣờng hợp sau [18,24–26]: (i) Tăng khả khuếch tán iôn Cr3+ vào mạng α–Al2O3, tức khả thay iôn Al3+ iôn Cr3+ tăng lên (xem phân tích giản đồ XRD Hình 3.2), dẫn đến xác suất chuyển dời (hấp thụ phát xạ) lớn làm cho cƣờng độ P tăng dần theo nhiệt độ ủ mẫu (ii) Chất lƣợng tinh thể đƣợc cải thiện theo tăng dần nhiệt độ ủ mẫu Điều làm cho tính chất quang vật liệu tốt Tuy nhiên, ủ nhiệt độ cao, dẫn đến làm phá hủy cấu trúc kết làm giảm tính chất quang Trong nghiên cứu này, vào giản đồ nhiễu xạ tia X Hình 3.2 thay đổi khơng nhiều cƣờng độ PL hai mẫu ủ 1400 C 1500 C Hình 3.6, chúng tơi dự đoán cƣờng độ PL bị giảm mạnh ủ nhiệt độ lớn 1500 C download by : skknchat@gmail.com 54 Hình 3.6 Phổ huỳnh quang với bƣớc sóng kích thích 405 nm mẫu Al2O3 pha tạp 0,6% Cr3+ chế tạo phƣơng pháp đồng kết tủa ủ nhiệt độ từ 600 oC đến 1500 oC mơi trƣờng khơng khí Hình chèn nhỏ với ảnh phóng to để thấy rõ cƣờng độ đỉnh 695 nm thay đổi theo nhiệt độ 3.4.3 Ảnh hưởng nồng độ pha tạp lên tính chất quang vật liệu Al2O3:Cr3+ Các nghiên cứu gần chứng tỏ tính chất quang vật liệu phụ thuộc nhiều yếu tố điều kiện thực nghiệm Trong đó, nồng độ pha tạp yếu tố quan trọng cần đƣợc khảo sát kỹ lƣỡng chi tiết Căn vào download by : skknchat@gmail.com 55 phổ kích thích huỳnh quang, chúng tơi nghiên cứu tính chất quang vật liệu α–Al2O3:x%Cr3+ (x=0,2-2%) với hai bƣớc sóng kích thích 405 nm 560 nm Hình 3.7 Phổ huỳnh quang kích thích 405 nm mẫu Al2O3:x%Cr3+ (x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt độ 1400 oC môi trƣờng khơng khí với nồng độ khác download by : skknchat@gmail.com 56 Hình 3.7 kết đo phổ PL với bƣớc sóng kích thích 405 mẫu α–Al2O3:x%Cr3+ (x=0,2-2%) ủ nhiệt 1400 C, thời gian mơi trƣờng khơng khí Trên Hình 3.7, thấy phổ huỳnh quang mẫu có nồng độ pha tạp khác có hình dạng gần nhƣ không thay đổi Tuy nhiên, cƣờng độ phụ thuộc mạnh vào nồng độ pha tạp Cr3+ Sự phụ thuộc cƣờng độ PL vào nồng độ đƣợc biễu diễn Hình 3.8 Dễ dàng nhận thấy nồng độ thay đổi từ 0,2% đến 2%, cƣờng độ huỳnh quang tăng lên, sau giảm xuống đạt giá trị cực đại nồng độ 0,6% Trƣờng hợp cƣờng độ huỳnh quang giảm xuống nồng độ pha tạp đủ lớn (>0,6%) gọi tƣợng dập tắt huỳnh quang nồng độ đƣợc lý giải nhƣ mơ hình Hình 3.9 Hình 3.8 Đƣờng biễu diễn phụ thuộc cƣờng độ huỳnh quang (kích thích 405 nm) đỉnh phát xạ 695 nm mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 oC môi trƣờng khơng khí download by : skknchat@gmail.com 57 Có nghĩa tăng dần nồng độ pha tạp, diện tích tâm tái hợp (mật độ ion Cr3+) tăng lên dẫn đến cƣờng độ P tăng lên (xem Hình 3.9a) Tuy nhiên, tăng đến nồng độ đủ lớn (giá trị giới hạn), khoảng cách tâm tạp đủ nhỏ (khoảng cách tới hạn Rc) xảy tƣợng truyền lƣợng tâm phát xạ (Cr3+ - Cr3+), kết làm cho cƣờng độ huỳnh quang giảm xuống (xem Hình 3.9b) [32][33] Chú ý rằng, khoảng cách tới hạn Rc xác định theo công thức Blasse (3.4) khoảng cách tới hạn Rc đƣợc tính lần đƣờng kính hạt theo cơng thức [20]: √ Trong đó: V thể tích sở Xc nồng độ tới hạn N số cation ô sở Các nghiên cứu chứng minh chế tƣợng dập tắt huỳnh quang theo nồng độ ba ngun nhân sau [20][34]:  Q trình truyền điện tích  Quá trình tái hấp thụ  Quá trình tƣơng tác đa cực điện Tuy nhiên nghiên cứu chƣa nghiên cứu sâu sắc vấn đề chắn cần đƣợc thực nghiên cứu thời gian tới download by : skknchat@gmail.com 58 Hình (a) Sự phát huỳnh quang nồng độ thấp; (b) dập tắt huỳnh quang nồng độ pha tạp cao [20][34] Hình 3.10 Phổ huỳnh quang kích thích 560 nm mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo phương pháp đồng kết tủa ủ nhiệt 1400 C môi trường không khí download by : skknchat@gmail.com 59 Phổ huỳnh quang với kích thích bƣớc sóng 560 nm đồ thị biểu diễn phụ thuộc cƣờng độ đỉnh 695 nm vào nồng độ pha tạp đƣợc trình bày tƣơng ứng Hình 3.10 Hình 3.11 Trên Hình 3.10 cho thấy hình dạng phổ gần giống cƣờng độ huỳnh quang thay đổi theo quy luật tƣơng tự nhƣ trƣờng hợp sử dụng bƣớc sóng kích thích 405 nm Tức khoảng nồng độ Cr3+ thay đổi từ 0,2% đến 2%, cƣờng độ P tăng lên, đạt giá trị cực đại 0,6% sau giảm xuống (xem hình chèn nhỏ Hình 3.10) Điểm khác biệt rõ ràng cƣờng độ PL kích thích 405 nm ln có giá trị lớn kích thích 560 nm (so sánh Hình 3.8 3.11) Điều đƣợc phân tích lý giải Hình 3.5 Nhƣ cách thay đổi điều kiện thực nghiệm tìm đƣợc điều kiện tối ƣu để thu đƣợc tính chất quang tốt ứng với mẫu -Al2O3:Cr3+ pha tạp 0,6% ủ 1400 C thời gian mơi trƣờng khơng khí Hình 3.11 Đƣờng biễu diễn phụ thuộc cƣờng độ huỳnh quang (kích thích 560 nm) đỉnh phát xạ 695 nm mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo phƣơng pháp đồng kết tủa ủ nhiệt 1400 C môi trƣờng khơng khí download by : skknchat@gmail.com 60 Để củng cố thêm chứng ảnh hƣởng nồng độ pha tạp đến tính chất quang vật liệu Al2O3:Cr3+, chúng tơi tiến hành phân tích phổ kích thích đo bƣớc sóng 695 nm mẫu có nồng độ Cr3+ thay đổi từ 0,2% đến 1,5% kết trình bày Hình 3.12 Từ Hình 3.12 cho thấy cƣờng độ hai đỉnh hấp thụ phụ thuộc mạnh vào nồng độ pha tạp Đầu tiên tăng lên, sau giảm xuống đạt giá trị cực đại nồng độ 0,6% Đây chứng quan trọng để khẳng định nồng độ 0,6% xác suất chuyển dời (hấp thụ) lớn xác suất tái hợp (cƣờng độ huỳnh quang) đạt giá trị cực đại nồng độ Hình 3.12 Phổ kích thích huỳnh quang đo đỉnh 695 nm mẫu Al2O3 với nồng độ pha tạp Cr3+ khác từ 0,2% đến 1,5% download by : skknchat@gmail.com 61 3.5 Thử nghiệm chế tạo đèn LED đỏ cách phủ bột Al2O3:Cr3+ lên chíp NUV LED 395 nm Căn vào phổ kích thích huỳnh quang (hấp thụ hai vùng ứng với cực đại 405 nm 560 nm) phổ huỳnh quang (phát xạ mạnh bƣớc sóng 695 nm) cho phép chúng tơi thử nghiệm chế tạo đèn ED đỏ nhằm ứng dụng cho trồng Ở hồn tồn chọn hai loại chíp Violet (410 nm) chíp Green (550 nm) để thử nghiệm Tuy nhiên, xuất phát từ điều kiện sở đào tạo nghiên cứu, chế tạo đèn ED đỏ cách phủ bột Al2O3:Cr3+ lên chíp NUV ED 395 nm khảo sát thông số Hình 3.13 Các hình ảnh thử nghiệm chế tạo đèn LED đỏ từ bột Al2O3:Cr3+ phủ lên chíp NUV LED 395 nm: (a) bột Al2O3:Cr3+, (b) chíp NUV LED 395 nm đƣợc phủ bột Al2O3:Cr3+ (c) đèn LED phát xạ đỏ nối với nguồn download by : skknchat@gmail.com 62 Hình 3.13 hình ảnh thực tế thu đƣợc với ba giai đoạn khác trình chế tạo thử nghiệm, với Hình 3.13a bột Al2O3:Cr3+ thu đƣợc sau chế tạo, 3.13b chíp NUV ED 395 nm đƣợc phủ bột Al2O3:Cr3+ bề mặt 3.13c đèn ED hoàn thiện cho phát xạ đỏ nối với nguồn Các thông số quang học đèn ED đỏ đƣợc phân tích nhờ phép đo phân bố cầu tích phân Hình 3.14 kết phổ điện phát quang (a) biểu đồ CIE đèn ED đỏ dƣới điện áp-dòng điện 9V-150 mA Ảnh phát xạ thực tế đèn ED đỏ đƣợc hình chèn nhỏ 3.14b Trên Hình 3.14a, phổ điện phát quang cho thấy có hai vùng phát xạ: thứ phát xạ vùng cận tử ngoại (NUV) xung quanh bƣớc sóng 395 nm thứ hai phát xạ vùng đỏ (698 nm) Trong phát xạ NUV có nguồn gốc từ chíp LED 395 nm phát xạ vùng đỏ liên quan đến phát xạ bột huỳnh quang   Al O3 :0,6%Cr3+ Biểu đồ CIE Hình 3.14b đèn ED đỏ tọa độ màu (x,y) có giá trị lần lƣợt x=0,5650; y=0,2429 Ảnh sắc nét đèn ED đỏ chèn Hình 3.14b chứng quan trọng chứng tỏ đèn ED đỏ đƣợc thử nghiệm chế tạo thành cơng Hình 3.14 Phổ điện phát quang (a) biểu đồ CIE đèn LED đỏ dòng điện 150 mA Hình chèn nhỏ hình 3.14b ảnh phát xạ thực tế đèn LED thử nghiệm download by : skknchat@gmail.com 63 KẾT LUẬN Trong khoảng thời gian ngắn học tập nghiên cứu Khoa Vật lý – Trƣờng Đại học Quy Nhơn kết hợp Trƣờng Đại học PHENIKAA tác giả thu đƣợc kết nhƣ sau Đã xây dựng thành cơng quy trình chế tạo bột -Al2O3:Cr3+ phát xạ mạnh vùng ánh sáng đỏ phƣơng pháp đồng kết tủa Đã khảo sát ảnh hƣởng nhiệt độ ủ mẫu lên cấu trúc tinh thể -Al2O3 Kết cho thấy pha tinh thể bắt đầu hình thành nhiệt độ 1100 °C thu đƣợc đơn pha nhiệt độ ≥1200 C Đã khảo sát ảnh hƣởng nhiệt độ ủ mẫu nồng độ pha tạp Cr3+ lên tính chất quang vật liệu Chúng tơi tìm đƣợc điều kiện tối ƣu để thu đƣợc tính chất quang tốt ứng với mẫu pha tạp 0,6% thiêu kết 1400 C thời gian môi trƣờng khơng khí Đã thử nghiệm chế tạo thành cơng đèn ED phát xạ đỏ sở bột huỳnh quang -Al2O3:Cr3+ chíp NUV LED 395 nm với tọa độ màu thu đƣợc x=0,5650; y=0,2429 Kết chứng tỏ bột huỳnh quang chế tạo đƣợc có tiềm ứng dụng cao chế tạo đèn ED phát xạ đỏ chuyên dung cho trồng download by : skknchat@gmail.com 64 DANH MỤC TÀI LIỆU THAM KHẢO [1] S Ye, F Xiao, Y.X Pan, Y.Y Ma, Q.Y Zhang, Phosphors in phosphor-converted white light-emitting diodes  : Recent advances in materials , techniques and properties, 71, 1–34, 2010 [2] Hữu Đức Nguyễn, Vật liệu từ cấu trúc nanô điện tử học spin, 2008 [3] L.T Hà, Nghiên cứu chế tạo bột huỳnh quang SrPB, SrPCl Y2O3 pha tạp Eu ứng dụng đèn huỳnh quang, Luận án tiến sĩ, 2016 [4] L.H Hồng, Nghiên cứu tính chất quang ion Cr3+ số vật liệu có cấu trúc spinel, Luận án tiến sĩ, 2003 [5] Trịnh Thị Loan, Tổng hợp nghiên cứu tính chất quang ion Cr3+ Co2+ spinel ZnAl2O4 ơxít thành phần, Luận án tiến sĩ, 2011 [6] Phạm Nguyễn Thùy Trang, Chế tạo tính chất quang phổ vật liệu BaMgAl10O17: Eu2+, Mn2+ Luận án tiến sĩ, 2017 [7] P.R Sajanlal, T.S Sreeprasad, A.K Samal, T Pradeep, Anisotropic nanomaterials: structure, growth, assembly, and functions, Nano Rev 5883, 2011 [8] Farzad Ebrahimi, Nanocomposites - New Trends and Developments, chaper 1, 2012 [9] G Cao, Nanostructures & nanomaterials: synthesis, properties & applications, Chaper 1, 2013 [10] B Bhushan, Springer handbook of nanotechnology, 2013 [11] R Tala-ighil, Handbook of Nanoelectrochemistry, Handb Nano electrochemistry, 1–18, 2015 [12] N.K.V Đỗ văn Ái, Mai Trọng Nhuận, Một số đặc điểm phân bố asen tự nhiên, 2000 download by : skknchat@gmail.com 65 [13] J.G.B and C.R Adriana P Herrera,Oscar Resto, Synthesis and agglomeration of gold nanoparticles in reverse micelles, Nanotechnology 16, 7, 2005 [14] Phan Văn Tƣờng, Giáo trình Vật liệu vơ cơ, NXB ĐHQG Hà Nội, 2007 [15] V Singh · R.P.S Chakradhar · J.L Rao · K Al-Shamery · M Haase · Y.-D Jho, Electron paramagnetic resonance and photoluminescence properties of α-Al2O3:Cr3+ phosphors, Applied Physics B, 107, 489–495, 2012 [16] D Chen, Y Wang, M Hong, Lanthanide nanomaterials with photon management characteristics for photovoltaic application, Nano Energy 73–90, 2012 [17] P Goldner, F Auzel, Comparison between standard and modified Judd - Ofelt theories in a Pr3+-doped fluoride glass, Acta Phys Pol A 90 191–196, 1996 [18] B Cheng, S Qu, H Zhou, Z Wang, Al2O3:Cr3+ nanotubes synthesized via homogenization precipitation followed by heat treatment, J Phys Chem B 110, 15749–15754, 2006 [19] S.P Feofilov, A.A Kaplyanskii, R.I Zakharchenya, Optical generation of nonequilibrium terahertz resonant vibrational excitations in highly porous aluminum oxide, J Lumin 66–67, 349–357, 1995 [20] G.B.B.C Grabmaier, Photoluminescent Materials and Electroluminescent Devices, Chaper 1, 2016 [21] G Gaft, Michael, Reisfeld, Renata, Panczer, Modern Luminescence Spectroscopy of Minerals and Materials, Chaper 1, 2015 [22] C at all Al, Upconversion properties of a transparent Er 3+–Yb3+ codoped LaF3–SiO2 glass-ceramics prepared by sol – gel method, Cryst Growth Des 15, 2453–2458, 2008 [23] N Vu, T Kim Anh, G.C Yi, W Strek, Photoluminescence and download by : skknchat@gmail.com 66 cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis, J Lumin 122–123, 776–779, 2007 [24] D Liu, Z Zhu, H Liu, Z Zhang, Y Zhang, G Li, Al2O3:Cr3+ microfibers by hydrothermal route: Luminescence properties, Mater Res Bull 47, 2332–2335, 2012 [25] G Rani, P.D Sahare, Structural and photoluminescent properties of Al2O3:Cr3+ nanoparticles via solution combustion synthesis method, Adv Powder Technol 25, 767–772, 2014 [26] C Pan, S.Y Chen, P Shen, Photoluminescence and transformation of dense Al2O3:Cr3+ condensates synthesized by laser-ablation route, J Cryst Growth 310, 699–705, 2008 [27] V Gupta, A Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film, J Appl Phys 80, 1063–1073, 1996 [28] Z.B Fang, Z.J Yan, Y.S Tan, X.Q Liu, Y.Y Wang, Influence of postannealing treatment on the structure properties of ZnO films, Appl Surf Sci 241, 303–308, 2008 [29] T.T Loan, N.N Long, L.H Ha, Conference - IWAMN2009 - Synthesis and Optical Properties of Al2O3  :Cr3+ Powders, 9, 531–535, 2011 [30] T Li, S Yang, L Huang, J Zhang, B Gu, Strong photoluminescence from Cr3+ doped porous anodic alumina, Journal of Physics: Condensed Matter, 16, 2463, 2004 [31] Nguyễn Mạnh Sơn, Hoàng Phƣớc Cao Nguyên, Nguyễn Văn Thanh, ION Mn4+ VÀ Cr3+ TRONG TR ƢỜ NG TINH TH Ể α -Al2O3, Tạp chí khoa học số 2, 2016 [32] B Chandra Babu, B.V Rao, M Ravi, S Babu, Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite download by : skknchat@gmail.com 67 Zn2SiO4 nanocomposites obtained by a sol-gel method, J Mol Struct 1127, 6–14, 2017 [33] K.W Park, H.S Lim, S.W Park, G Deressa, J.S Kim, Strong blue absorption of green Zn2SiO4:Mn2+ phosphor by doping heavy Mn2+ concentrations, Chem Phys Lett 636, 141–145, 2015 [34] J.A DeLuca, An introduction to luminescence in inorganic solids, J Chem Educ 57, 541, 2009 download by : skknchat@gmail.com ... xạ ánh sáng đỏ sở chíp Violet LED bột huỳnh quang Al2O3: Cr3+ chƣa đƣợc trọng nhiều Từ lý trên, chọn đề tài “NGHIÊN CỨU TỔNG HỢP VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU Al2O3: Cr3+ NHẰM ỨNG DỤNG TRONG ĐÈN... đặc tính vơ quan trọng chế tạo đèn ED phát xạ đỏ chuyên dụng cho nông nghiệp Tuy nhiên, nghiên cứu dừng lại quy trình tổng hợp Al2O3: Cr3+ phân tích tính chất quang Việc nghiên cứu đèn ED phát xạ. .. NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1 Mở đầu Mục đích nghiên cứu phát triển thành cơng quy trình chế tạo bột huỳnh quang Al2O3 pha tạp Cr3+ phát xạ mạnh vùng ánh sáng đỏ nhằm ứng dụng đèn ED chiếu sáng

Ngày đăng: 03/04/2022, 12:31

HÌNH ẢNH LIÊN QUAN

Hình 1.1. Phân loại vật liệu nano: (0D) hạt nano hình cầu, cụm nano; (1D) dây, thanh nano; (2D) màng, đĩa và lƣới nano; (3D) vật liệu khối [7]  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.1. Phân loại vật liệu nano: (0D) hạt nano hình cầu, cụm nano; (1D) dây, thanh nano; (2D) màng, đĩa và lƣới nano; (3D) vật liệu khối [7] (Trang 16)
Hình 1.2. Một số hình ảnh về đá quý ruby - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.2. Một số hình ảnh về đá quý ruby (Trang 21)
Hình 1.3. Cấu trúc tinh thể α-Al2O3 (corundum) - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.3. Cấu trúc tinh thể α-Al2O3 (corundum) (Trang 22)
Hình 1.4. Sơ đồ quá trình huỳnh quang [20] - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.4. Sơ đồ quá trình huỳnh quang [20] (Trang 27)
Hình 1.5. Sự truyền năng lƣợng từ E tới E1 [20] - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.5. Sự truyền năng lƣợng từ E tới E1 [20] (Trang 27)
1.4.2. Giản đồ Tanabe-Sugano cho cấu hình d3 - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
1.4.2. Giản đồ Tanabe-Sugano cho cấu hình d3 (Trang 32)
Trên Hình 1.6 cho thấy các mức năng lƣợng của ion tự do nằm phía bên trái, còn các mức năng lƣợng của chúng khi ở trong trƣờng tinh thể bát diện  nằm bên phải giản đồ Tanabe-Sugano - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
r ên Hình 1.6 cho thấy các mức năng lƣợng của ion tự do nằm phía bên trái, còn các mức năng lƣợng của chúng khi ở trong trƣờng tinh thể bát diện nằm bên phải giản đồ Tanabe-Sugano (Trang 33)
Hình 1.8. Phổ phát quang của α –Al2O3:Cr3+ với λex= 365nm và phổ kích phát quang của α –Al 2O3:Cr3+ với λem =694 nm  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.8. Phổ phát quang của α –Al2O3:Cr3+ với λex= 365nm và phổ kích phát quang của α –Al 2O3:Cr3+ với λem =694 nm (Trang 40)
Hình 1.9. Tính chất quang của vật liệu Al2O3:Cr3+ bằng phƣơng pháp cắt laze - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.9. Tính chất quang của vật liệu Al2O3:Cr3+ bằng phƣơng pháp cắt laze (Trang 40)
Hình 1.10. Tính chất quang của vật liệu Al2O3:Cr3+ bằng phƣơng pháp đốt cháy gel - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 1.10. Tính chất quang của vật liệu Al2O3:Cr3+ bằng phƣơng pháp đốt cháy gel (Trang 41)
Hình 2.1. Các thiết bị thí nghiệm để chế tạo bột Al2O3 pha tạp Cr3+ bằng phƣơng pháp đồng kết tủa và ủ nhiệt trong mơi trƣờng khơng khí: (a) cân điện tử, (b) máy  khuấy từ gia nhiệt, (c) bể rung siêu âm, (d) máy quay li tâm, (e) tủ sấy và (f) lò nung  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 2.1. Các thiết bị thí nghiệm để chế tạo bột Al2O3 pha tạp Cr3+ bằng phƣơng pháp đồng kết tủa và ủ nhiệt trong mơi trƣờng khơng khí: (a) cân điện tử, (b) máy khuấy từ gia nhiệt, (c) bể rung siêu âm, (d) máy quay li tâm, (e) tủ sấy và (f) lò nung (Trang 44)
Hình 2.2. Sơ đồ quy trình tổng quát để chế tạo vật liệu huỳnh quang bằng phƣơng pháp đồng kết tủa  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 2.2. Sơ đồ quy trình tổng quát để chế tạo vật liệu huỳnh quang bằng phƣơng pháp đồng kết tủa (Trang 47)
Hình 2.3. Sơ đồ quy trình tổng hợp bột huỳnh quang Al2O3 pha tạp Cr3+ bằng phƣơng pháp đồng kết tủa  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 2.3. Sơ đồ quy trình tổng hợp bột huỳnh quang Al2O3 pha tạp Cr3+ bằng phƣơng pháp đồng kết tủa (Trang 48)
Bảng 2.1. Khối lƣợng hóa chất để tổng hợp bột huỳnh quang Al2O3:Cr3+ Tỉ lệ pha tạp (%) AlCl3.6H2O (g) Cr(NO3)3.9H2O (g)  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Bảng 2.1. Khối lƣợng hóa chất để tổng hợp bột huỳnh quang Al2O3:Cr3+ Tỉ lệ pha tạp (%) AlCl3.6H2O (g) Cr(NO3)3.9H2O (g) (Trang 50)
Hình 2.4. Hệ huỳnh quang (Nanolog, Horiba Jobin Yvon) nguồn kích thích là đèn Xenon cơng suất 450 W có bƣớc sóng từ 250 ÷ 800 nm, tại viện Tiên tiến Khoa học và  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 2.4. Hệ huỳnh quang (Nanolog, Horiba Jobin Yvon) nguồn kích thích là đèn Xenon cơng suất 450 W có bƣớc sóng từ 250 ÷ 800 nm, tại viện Tiên tiến Khoa học và (Trang 51)
2.3.2. Phương pháp nghiên cứu hình thái bề mặt của vật liệu bằng ảnh FESEM  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
2.3.2. Phương pháp nghiên cứu hình thái bề mặt của vật liệu bằng ảnh FESEM (Trang 52)
Hình 2.6. Hệ đo giản đồ nhiễu xạ ti aX (D/MAX-2500/PC) tại Viện (KICET), Hàn Quốc  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 2.6. Hệ đo giản đồ nhiễu xạ ti aX (D/MAX-2500/PC) tại Viện (KICET), Hàn Quốc (Trang 53)
Hình 2.7. Hệ đo các thông số điện quang Gamma Scientific RadOMA GS-1290 spectroradiometer  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 2.7. Hệ đo các thông số điện quang Gamma Scientific RadOMA GS-1290 spectroradiometer (Trang 54)
Hình 3.1. Ảnh FESEM của mẫu Al2O3:0,6%Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ tại các nhiệt độ khác nhau trong mơi trƣờng khơng khí:  (a) 600 oC;  (b) 1100  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.1. Ảnh FESEM của mẫu Al2O3:0,6%Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ tại các nhiệt độ khác nhau trong mơi trƣờng khơng khí: (a) 600 oC; (b) 1100 (Trang 56)
Hình 3.2. Giản đồ nhiễu xạ ti aX của vật liệu Al2O3:0,6%Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ nhiệt tại các nhiệt độ khác nhau từ 600 C đến 1500 C, thời  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.2. Giản đồ nhiễu xạ ti aX của vật liệu Al2O3:0,6%Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ nhiệt tại các nhiệt độ khác nhau từ 600 C đến 1500 C, thời (Trang 58)
Hình 3.3. Phổ huỳnh quang kích thích tại 405nm của vật liệu Al2O3 pha tạp 0,6%Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ nhiệt tại 1400 o C với thời gian  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.3. Phổ huỳnh quang kích thích tại 405nm của vật liệu Al2O3 pha tạp 0,6%Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ nhiệt tại 1400 o C với thời gian (Trang 60)
Hình 3.4. Phổ kích thích huỳnh quang của mẫu Al2O3:Cr3+0,6% ủở 1200 oC với thời gian 2 giờ trong mơi trƣờng khơng khí  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.4. Phổ kích thích huỳnh quang của mẫu Al2O3:Cr3+0,6% ủở 1200 oC với thời gian 2 giờ trong mơi trƣờng khơng khí (Trang 61)
Hình 3.6. Phổ huỳnh quang với bƣớc sóng kích thích 405nm của mẫu Al2O3 pha tạp 0,6% Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và  ủ ở các nhiệt độ từ 600 o C đến  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.6. Phổ huỳnh quang với bƣớc sóng kích thích 405nm của mẫu Al2O3 pha tạp 0,6% Cr3+ chế tạo bằng phƣơng pháp đồng kết tủa và ủ ở các nhiệt độ từ 600 o C đến (Trang 65)
Hình 3.7. Phổ huỳnh quang kích thích tại 405nm của mẫu Al2O3:x%Cr3+ (x=0,2-2%) chế tạo bằng phƣơng pháp đồng kết tủa và ủ  tại các nhiệt độ 1400 oC  môi trƣờng  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.7. Phổ huỳnh quang kích thích tại 405nm của mẫu Al2O3:x%Cr3+ (x=0,2-2%) chế tạo bằng phƣơng pháp đồng kết tủa và ủ tại các nhiệt độ 1400 oC môi trƣờng (Trang 66)
Hình 3.7 là kết quả đo phổ PL với bƣớc sóng kích thích 405 của các mẫu α–Al 2O3:x%Cr3+  (x=0,2-2%)  ủ  nhiệt  tại  1400  C,  thời  gian  2  giờ  trong  môi  trƣờng khơng khí - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.7 là kết quả đo phổ PL với bƣớc sóng kích thích 405 của các mẫu α–Al 2O3:x%Cr3+ (x=0,2-2%) ủ nhiệt tại 1400 C, thời gian 2 giờ trong môi trƣờng khơng khí (Trang 67)
Hình 3.9. (a) Sự phát huỳnh quang khi nồng độ thấp; (b) sự dập tắt huỳnh quang khi nồng độ pha tạp cao [20][34]  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.9. (a) Sự phát huỳnh quang khi nồng độ thấp; (b) sự dập tắt huỳnh quang khi nồng độ pha tạp cao [20][34] (Trang 69)
Hình 3.11. Đƣờng biễu diễn sự phụ thuộc cƣờng độ huỳnh quang (kích thích tại 560 nm) của đỉnh phát xạ 695 nm của mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo bằng  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.11. Đƣờng biễu diễn sự phụ thuộc cƣờng độ huỳnh quang (kích thích tại 560 nm) của đỉnh phát xạ 695 nm của mẫu Al2O3:x%Cr3+(x=0,2-2%) chế tạo bằng (Trang 70)
Hình 3.12. Phổ kích thích huỳnh quang đo tại đỉnh 695 nm của mẫu Al2O3 với các nồng độ pha tạp Cr3+ khác nhau từ 0,2% đến 1,5%  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.12. Phổ kích thích huỳnh quang đo tại đỉnh 695 nm của mẫu Al2O3 với các nồng độ pha tạp Cr3+ khác nhau từ 0,2% đến 1,5% (Trang 71)
Hình 3.13. Các hình ảnh thử nghiệm chế tạo đèn LED đỏ từ bột Al2O3:Cr3+ phủ lên chíp NUV LED 395 nm: (a) bột Al2O3:Cr3+ , (b) chíp NUV LED 395 nm đã đƣợc phủ  - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.13. Các hình ảnh thử nghiệm chế tạo đèn LED đỏ từ bột Al2O3:Cr3+ phủ lên chíp NUV LED 395 nm: (a) bột Al2O3:Cr3+ , (b) chíp NUV LED 395 nm đã đƣợc phủ (Trang 72)
Hình 3.13 là hình ảnh thực tế thu đƣợc với ba giai đoạn khác nhau trong quá trình chế tạo thử nghiệm, với Hình 3.13a là bột Al2O3:Cr3+  thu đƣợc sau  chế tạo, 3.13b là chíp NUV  ED 395 nm đã đƣợc phủ bột Al2O3:Cr3+  trên bề  mặt  và 3.13c là  đèn  ED  hoà - (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và tính chất quang của vật liệu al2o3  cr+ nhằm ứng dụng trong đèn LED phát xạ ánh sáng đỏ
Hình 3.13 là hình ảnh thực tế thu đƣợc với ba giai đoạn khác nhau trong quá trình chế tạo thử nghiệm, với Hình 3.13a là bột Al2O3:Cr3+ thu đƣợc sau chế tạo, 3.13b là chíp NUV ED 395 nm đã đƣợc phủ bột Al2O3:Cr3+ trên bề mặt và 3.13c là đèn ED hoà (Trang 73)

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w