Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
160,78 KB
Nội dung
Trần Só Tùng Hình học 11 CHƯƠNG II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN QUAN HỆ SONG SONG I ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Xác định mặt phẳng Ba điểm không thẳng hàng thuộc mặt phẳng (mp(ABC), (ABC)) Một điểm đường thẳng không qua điểm thuộc mặt phẳng (mp(A,d)) Hai đường thẳng cắt thuộc mặt phẳng (mp(a, b)) Một số qui tắc vẽ hình biểu diễn hình không gian Hình biểu diễn đường thẳng đường thẳng, đoạn thẳng đoạn thẳng Hình biểu diễn hai đường thẳng song song hai đường thẳng song song, hai đường thẳng cắt hai đường thẳng cắt Hình biểu diễn phải giữ nguyên quan hệ thuộc điểm đường thẳng Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt VẤN ĐỀ 1: Tìm giao tuyến hai mặt phẳng Muốn tìm giao tuyến hai mặt phẳng ta tìm hai điểm chung phân biệt hai mặt phẳng Khi giao tuyến đường thẳng qua hai điểm chung Cho hình chóp S.ABCD Đáy ABCD có AB cắt CD E, AC cắt BD F a) Tìm giao tuyến cặp mặt phẳng (SAB) (SCD), (SAC) (SBD) b) Tìm giao tuyến (SEF) với mặt phẳng (SAD), (SBC) Cho hình chóp S.ABCD, có đáy ABCD hình bình hành tâm O M, N, P trung điểm BC, CD, SO Tìm giao tuyến mp(MNP) với mặt phẳng (SAB), (SAD), (SBC) (SCD) Cho tứ diện ABCD Gọi I, J trung điểm AC BC K điểm cạnh BD cho KD < KB Tìm giao tuyến mp(IJK) với (ACD) (ABD) Cho tứ diện ABCD Gọi I, J trung điểm AD BC a) Tìm giao tuyến mặt phẳng (IBC) (JAD) b) M điểm cạnh AB, N điểm cạnh AC Tìm giao tuyến mặt phẳng (IBC) (DMN) Cho tứ diện (ABCD) M điểm bên ABD, N điểm bên ACD Tìm giao tuyến cặp mặt phẳng (AMN) (BCD), (DMN) (ABC) VẤN ĐỀ 2: Tìm giao điểm đường thẳng mặt phẳng Muốn tìm giao điểm đường thẳng mặt phẳng ta tìm giao điểm đường thẳng với đường thẳng nằm mặt phẳng cho Cho tứ diện ABCD Trên AC AD lấy điểm M, N cho MN không song song vói CD Gọi O điểm bên BCD a) Tìm giao tuyến (OMN) (BCD) b) Tìm giao điểm BC BD với mặt phẳng (OMN) Cho hình chóp S.ABCD M điểm cạnh SC a) Tìm giao điểm AM (SBD) DeThiMau.vn Hình học 11 Trần Só Tùng b) Gọi N điểm cạnh BC Tìm giao điểm SD (AMN) Cho tứ diện ABCD Gọi M, N trung điểm AC BC K điểm cạnh BD không trùng với trung điểm BD Tìm giao điểm CD AD với mặt phẳng (MNK) Cho tứ diện ABCD M, N hai điểm AC AD O điểm bên BCD Tìm giao điểm của: a) MN (ABO) b) AO (BMN) HD: a) Tìm giao tuyến (ABO) (ACD) b) Tìm giao tuyến (BMN) (ABO) Cho hình chóp S.ABCD, có đáy hình thang, cạnh đáy lớn AB Gọi I, J, K ba điểm SA, AB, BC a) Tìm giao điểm IK với (SBD) b) Tìm giao điểm mặt phẳng (IJK) với SD SC HD: a) Tìm giao tuyến (SBD) với (IJK) b) Tìm giao tuyến (IJK) với (SBD (SCD) VẤN ĐỀ 3: Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui Muốn chứng minh ba điểm thẳng hàng ta chứng minh chúng thuộc hai mặt phẳng phân biệt Muốn chứng minh ba đường thẳng đồng qui ta chứng minh giao điểm hai đường thẳng điểm chung hai mặt phẳng mà giao tuyến đường thẳng thứ ba Cho hình chóp S.ABCD Gọi I, J hai điểm cố định SA SC với SI > IA SJ < JC Một mặt phẳng (P) quay quanh IJ cắt SB M, SD N a) CMR: IJ, MN SO đồng qui (O =ACBD) Suy cách dựng điểm N biết M b) AD cắt BC E, IN cắt MJ F CMR: S, E, F thẳng hàng c) IN cắt AD P, MJ cắt BC Q CMR PQ qua điểm cố định (P) di động Cho mặt phẳng (P) ba điểm A, B, C không thẳng hàng (P) Giả sử đường thẳng BC, CA, AB cắt (P) D, E, F Chứng minh D, E, F thẳng hàng Cho tứ diện ABCD Gọi E, F, G ba điểm ba cạnh AB, AC, BD cho EF cắt BC I, EG cắt AD H Chứng minh CD, IG, HF đồng qui Cho hai điểm cố định A, B mặt phẳng (P) cho AB không song song với (P) M điểm di động không gian cho MA, MB cắt (P) A, B Chứng minh AB qua điểm cố định Cho tứ diện SABC Qua C dựng mặt phẳng (P) cắt AB, SB B1, B Qua B dựng mặt phẳng (Q) cắt AC, SC C1, C BB, CC cắt O; BB1, CC1 cắt O1 Giả sử OO1 kéo dài cắt SA I a) Chứng minh: AO1, SO, BC đồng qui b) Chứng minh: I, B1, B I, C1, C thẳng hàng VẤN ĐỀ 4: Xác định thiết diện hình chóp với mặt phẳng Muốn xác định thiết diện hình chóp với mặt phẳng (P) ta làm sau: Từ điểm chung có sẵn, xác định giao tuyến (P) với mặt hình chóp (có thể mặt phẳng trung gian) Cho giao tuyến cắt cạnh mặt hình chóp, ta điểm chung (P) với mặt khác Từ xác định giao tuyến với mặt 10 DeThiMau.vn Trần Só Tùng Hình học 11 Tiếp tục giao tuyến khép kín ta thiết diện Cho hình chóp S.ABCD, có đáy hình bình hành tâm O Gọi M, N, I ba điểm AD, CD, SO Tìm thiết diện hình chóp với mặt phẳng (MNI) Cho tứ diện ABCD, cạnh a Kéo dài BC đoạn CE=a Kéo dài BD đoạn DF=a Gọi M trung điểm AB a) Tìm thiết diện tứ diện với mặt phẳng (MEF) a2 b) Tính diện tích thiết diện HD: b) Cho hình chóp S.ABC M điểm cạnh SC, N P trung điểm AB AD Tìm thiết diện hình chóp với mặt phẳng (MNP) HD: Thiết diện ngũ giác Cho hình chóp S.ABCD Trong SBC, lấy điểm M Trong SCD, lấy điểm N a) Tìm giao điểm MN (SAC) b) Tìm giao điểm SC với (AMN) c) Tìm thiết diện hình chóp S.ABCD với mặt phẳng (AMN) HD: a) Tìm (SMN)(SAC) b) Thiết diện tứ giác Cho hình chóp S.ABCD, có đáy hình bình hành tâm O Gọi M, N, P trung điểm SB, SD OC a) Tìm giao tuyến (MNP) với (SAC), giao điểm (MNP) với SA b) Xác định thiết diện hình chóp với (MNP) tính tỉ số mà (MNP) chia cạnh SA, BC, CD HD: b) Thiết diện ngũ giác Các tỉ số là: 1/3; 1; Cho hình chóp S.ABCD, có đáy hình bình hành Gọi M trung điểm SB, G trọng tâm SAD a) Tìm giao điểm I GM với (ABCD) Chứng minh (CGM) chứa CD b) Chứng minh (CGM) qua trung điểm SA Tìm thiết diện hình chóp với (CGM) c) Tìm thiết diện hình chóp với (AGM) HD: b) Thiết diện tứ giác c) Tìm (AGM)(SAC) Thiết diện tứ giác Cho hình chóp S.ABCD, M điểm cạnh BC, N điểm cạnh SD a) Tìm giao điểm I BN (SAC) giao điểm J MN (SAC) b) DM cắt AC K Chứng minh S, K, J thẳng hàng c) Xác định thiết diện hình chóp S.ABCD với mặt phẳng (BCN) HD: a) Gọi O=ACBD I=SOBN, J=AIMN b) J điểm chung (SAC) (SDM) c) Nối CI cắt SA P Thiết diện tứ giác BCNP Cho hình chóp S.ABCD, có đáy hình thang ABCD với AB//CD AB > CD Gọi I trung điểm SC Mặt phẳng (P) quay quanh AI cắt cạnh SB, SD M, N a) Chứng minh MN qua điểm cố định b) IM kéo dài cắt BC P, IN kéo dài cắt CD Q Chứng minh PQ qua điểm cố định c) Tìm tập hợp giao điểm IM AN HD: a) Qua giao điểm AI SO=(SAC)(SBD) b) Điểm A c) Một đoạn thẳng 11 DeThiMau.vn Hình học 11 Trần Só Tùng II HAI ĐƯỜNG THẲNG SONG SONG Định nghóa a a, b ( P ) b a / /b P a b Tính chất Nếu ba mặt phẳng phân biệt cắt đôi theo ba giao tuyến phân biệt ba giao tuyến đồng qui đôi song song Nếu hai mặt phẳng cắt qua hai đường thẳng song song giao tuyến chúng song song với hai đường thẳng trùng với hai đường thẳng Hai đường thẳng phân biệt song song với đường thẳng thứ ba song song với VẤN ĐỀ 1: Chứng minh hai đường thẳng song song Phương pháp: Có thể sử dụng cách sau: Chứng minh đường thẳng đồng phẳng, áp dụng phương pháp chứng minh song song hình học phẳng (như tính chất đường trung bình, định lí Talét đảo, …) Chứng minh đường thẳng song song với đường thẳng thứ ba Áp dụng định lí giao tuyeán song song Cho tứ diện ABCD Gọi I, J trọng tâm tam giác ABC, ABD Chứng minh IJ//CD Cho hình chóp S.ABCD, có đáy hình thang với đáy lớn AB Gọi M, N trung điểm SA SB a) Chứng minh: MN // CD b) Tìm giao điểm P SC với (AND) Kéo dài AN DP cắt I Chứng minh SI // AB // CD Tứ giác SABI hình gì? Cho tứ diện ABCD Gọi M, N, P, Q, R, S trung điểm AB, CD, BC, AD, AC, BD a) Chứng minh MNPQ hình bình hành b) Từ suy ba đoạn MN, PQ, RS cắt trung điểm đoạn Cho tam giác ABC nằm mặt phẳng (P) Gọi Bx, Cy hai nửa đường thẳng song song nằm phía (P) M, N hai điểm di động Bx, Cy cho CN = 2BM a) Chứng minh đường thẳng MN qua điểm cố định I M, N di động b) E thuộc đoạn AM EM = EA IE cắt AN F Gọi Q giao điểm BE CF CMR AQ song song với Bx, Cy (QMN) chứa đường thẳng cố định M, N di động Cho hình chóp S.ABCD, có đáy hình bình hành Gọi M, N, P, Q điểm nằm treân BC, SC, SD, AD cho MN // BS, NP // CD, MQ // CD a) Chứng minh: PQ // SA b) Gọi K giao điểm MN PQ Chứng minh: SK // AD // BC 12 DeThiMau.vn Trần Só Tùng Hình học 11 c) Qua Q dựng đường thẳng Qx // SC Qy // SB Tìm giao điểm Qx với (SAB) Qy với (SCD) VẤN ĐỀ 2: Tìm giao tuyến hai mặt phẳng Phương pháp: Tìm điểm chung hai mặt phẳng Áp dụng định lí giao tuyến để tìm phương giao tuyến Giao tuyến đường thẳng qua điểm chung song song với đường thẳng Cho hình chóp S.ABCD, có đáy hình thang với đáy lớn AB Gọi I, J trung điểm AD, BC G trọng tâm SAB a) Tìm giao tuyến (SAB) (IJG) b) Xác định thiết diện hình chóp với mặt phẳng (IJG) Thiết diện hình gì? Tìm điều kiện AB CD để thiết diện hình bình hành Cho hình chóp S.ABCD, có đáy hình bình hành Gọi I, J trọng tâm tam giác SAB, SAD M trung điểm CD Xác định thiết diện hình chóp với mặt phẳng (IJM) Cho hình chóp S.ABCD, có đáy hình thang với đáy AD = a, BC = b Gọi I, J trọng tâm tam giác SAD, SBC a) Tìm đoạn giao tuyến (ADJ) với mặt (SBC) đoạn giao tuyến (BCI) với mặt (SAD) b) Tìm độ dài đoạn giao tuyến hai mặt phẳng (ADJ) (BCI) giới hạn hai mặt phẳng (SAB) (SCD) HD: b) (a+b) Cho tứ diện ABCD, cạnh a Gọi I, J trung điểm AC, BC Gọi K điểm cạnh BD với KB = 2KD a) Xác định thiết diện tứ diện với mặt phẳng (IJK) Chứng minh thiết diện hình thang cân b) Tính diện tích thiết diện 5a2 51 288 Cho hình chóp S.ABCD, có đáy hình vuông cạnh a, tâm O Mặt bên SAB tam giác = 900 Gọi Dx đường thẳng qua D song song với SC Ngoài SAD HD: b) a) Tìm giao điểm I Dx với mp(SAB) Chứng minh: AI // SB b) Tìm thiết diện hình chóp SABCD với mp(AIC) Tính diện tích thiết diện HD: b) Tam giác AMC với M trung điểm SD Diện tích 13 DeThiMau.vn a2 14 Hình học 11 Trần Só Tùng III ĐƯỜNG THẲNG MẶT PHẲNG SONG SONG Định nghóa d // (P) d (P) = Tính chất Nếu đường thẳng d không nằm mặt phẳng (P) d song song với đường thẳng d nằm (P) d song song với (P) Nếu đường thẳng d song song với mặt phẳng (P) mặt phẳng (Q) chứa d mà cắt (P) cắt theo giao tuyến song song với d Nếu hai mặt phẳng cắt song song với đường thẳng giao tuyến chúng song song với đường thẳng Nếu hai đường thẳng a b chéo có mặt phẳng chứa a song song với b VẤN ĐỀ 1: Chứng minh đường thẳng song song với mặt phẳng Phương pháp: Ta chứng minh d không nằm (P) song song với đường thẳng d nằm (P) Cho hai hình bình hành ABCD ABEF không nằm mặt phẳng a) Gọi O, O tâm ABCD ABEF Chứng minh OO song song với mặt phẳng (ADF) vaø (BCE) 1 b) M, N laø điểm hai cạnh AE, BD cho AM = AE, BN = BD 3 Chứng minh MN // (CDFE) Cho hình chóp S.ABCD, có đáy ABCD hình bình hành Gọi M, N trung điểm cạnh AB, CD a) Chứng minh MN song song với mặt phẳng (SBC), (SAD) b) Gọi P trung điểm SA Chứng minh SB, SC song song với (MNP) c) Gọi G1, G2 trọng tâm tam giác ABC, SBC Chứng minh G1G2 // (SBC) Cho tứ diện ABCD G trọng tâm ABD M điểm cạnh BC cho MB = 2MC Chứng minh MG // (ACD) HD: Chứng minh MG song song với giao tuyến (BMG) (ACD) Cho tứ diện ABCD Gọi O, O tâm đường tròn nội tiếp tam giác ABC, ABD Chứng minh rằng: BC AB AC a) Điều kiện cần đủ để OO // (BCD) BD AB AD b) Điều kiện cần đủ để OO song song với mặt phẳng (BCD), (ACD) BC = BD AC = AD HD: Sử đụng tính chất đường phân giác tam giác Cho tứ diện ABCD Gọi M, N trung điểm cạnh AB, CD G trung điểm đoạn MN a) Tìm giao điểm A đường thẳng AG với mp(BCD) 14 DeThiMau.vn Trần Só Tùng Hình học 11 b) Qua M kẻ đường thẳng Mx song song với AA Mx cắt (BCD) M Chứng minh B, M, A thẳng hàng BM = MA = AN c) Chứng minh GA = 3GA VẤN ĐỀ 2: Tìm giao tuyến hai mặt phẳng Phương pháp: Tìm phương giao tuyến Từ xác định thiết diện hình chóp tạo mặt phẳng song song với hai đường thẳng cho trước Cho hình chóp S.ABCD M, N hai điểm AB, CD Mặt phẳng (P) qua MN song song với SA a) Tìm giao tuyến (P) với (SAB) (SAC) b) Xác định thiết diện hình chóp với mặt phẳng (P) c) Tìm điều kiện MN để thiết diện hình thang HD: c) MN // BC = 600, AB = a Gọi O trung Trong mặt phẳng (P), cho tam giác ABC vuông A, B điểm BC Lấy điểm S (P) cho SB = a SB OA Gọi M điểm cạnh AB Mặt phẳng (Q) qua M song song với SB OA, cắt BC, SC, SA N, P, Q Đặt x = BM (0 < x < a) a) Chứng minh MNPQ hình thang vuông b) Tính diện tích hình thang Tìm x để diện tích lớn x (4a x ) 2a HD: b) SMNPQ = SMNPQ đạt lớn x = Cho hình chóp S.ABCD M, N hai điểm SB, CD Mặt phẳng (P) qua MN song song với SC a) Tìm giao tuyến (P) với mặt phẳng (SBC), (SCD), (SAC) b) Xác định thiết diện hình chóp với mặt phẳng (P) Cho tứ diện ABCD có AB = a, CD = b Gọi I, J trung điểm AB CD Mặt phẳng (P) qua điểm M đoạn IJ song song với AB CD a) Tìm giao tuyến (P) với (ICD) b) Xác định thiết diện tứ diện ABCD với (P) Cho hình chóp S.ABCD, có đáy hình bình hành Gọi C trung điểm SC, M điểm di động cạnh SA Mặt phẳng (P) di động qua CM song song với BC a) Chứng minh (P) chứa đường thẳng cố định b) Xác định thiết diện mà (P) cắt hình chóp SABCD Xác định vị trí điểm M để thiết diện hình bình hành c) Tìm tập hợp giao điểm cạnh đối thiết diện M di động cạnh SA HD: a) Đường thẳng qua C song song với BC b) Hình thang Hình bình hành M trung điểm SA c) Hai nửa đường thẳng 15 DeThiMau.vn Hình học 11 Trần Só Tùng IV HAI MẶT PHẲNG SONG SONG Định nghóa (P) // (Q) (P) (Q) = Tính chất Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt song song với mặt phẳng (Q) (P) song song với (Q) Nếu đường thẳng d song song với mp(P) có mp(Q) chứa d song song với (P) Hai mặt phẳng phân biệt song song với mặt phẳng thứ ba song song với Cho điểm A (P) đường thẳng qua A song song với (P) nằm mp(Q) qua A song song với (P) Nếu mặt phẳng cắt hai mặt phẳng song song cắt mặt phẳng giao tuyến chúng song song với Hai mặt phẳng song song chắn hai cát tuyến song song đoạn thẳng Định lí Thales: Ba mặt phẳng đôi song song chắn hai cát tuyến đoạn thẳng tương ứng tỉ lệ Định lí Thales đảo: Giả sử hai đường thẳng d d lấy điểm A, B, C A, B, C cho: AB BC CA A ' B ' B 'C ' C ' A ' Khi đó, ba đường thẳng AA, BB, CC nằm ba mặt phẳng song song, tức chúng song với mặt phẳng VẤN ĐỀ 1: Chứng minh hai mặt phẳng song song Phương pháp: Chứng minh mặt phẳng chứa hai đường thẳng cắt song song với hai đường thẳng mặt phẳng Cho hình chóp S.ABCD, có đáy hình bình hành tâm O Gọi M, N trung điểm SA, SD a) Chứng minh (OMN) // (SBC) b) Gọi P, Q trung điểm AB, ON Chứng minh PQ // (SBC) Cho tứ diện ABCD Gọi I, J hai điểm di động cạnh AD, BC cho IA JB có: ID JC a) CMR: IJ song song với mặt phẳng cố định b) Tìm tập hợp điểm M chia đoạn IJ theo tỉ số k cho trước HD: a) IJ song song với mp qua AB song song CD b) Tập hợp điểm M đoạn EF với E, F điểm chia AB, CD theo tỉ số k 16 DeThiMau.vn Trần Só Tùng Hình học 11 Cho hình chóp S.ABCD, có đáy hình bình hành tâm O Gọi M, N trung điểm SA CD a) CMR: (OMN) // (SBC) b) Gọi I trung điểm SD, J điểm (ABCD) cách AB, CD Chứng minh IJ song song (SAB) c) Giả sử hai tam giác SAD, ABC cân A Gọi AE, AF đường phân giác tam giác ACD SAB Chứng minh EF // (SAD) ED FS HD: c) Chú ý: HD: Cùng nằm mặt phẳng qua A song song với (BCD) EC FB Cho hai hình vuông ABCD ABEF hai mặt phẳng khác Trên đường chéo AC BF lấy điểm M, N cho: AM = BN Các đường thẳng song song với AB vẽ từ M, N cắt AD, AF M, N a) Chứng minh: (CBE) // (ADF) b) Chứng minh: (DEF) // (MNNM) c) Gọi I trung điểm MN, tìm tập hợp điểm I M, N di động HD: c) Trung tuyến tam giác ODE vẽ từ O Cho hai nửa đường thẳng chéo Ax, By M N hai điểm di động Ax, By cho AM = BN Vẽ NP BA a) Chứng minh MP có phương không đổi MN song song với mặt phẳng cố định b) Gọi I trung điểm MN CMR I nằm đường thẳng cố định M, N di động Cho tứ diện ABCD có AB = AC = AD CMR đường phân giác góc , CAD , DAB BAC đồng phẳng VẤN ĐỀ 2: Tìm giao tuyến hai mặt phẳng Phương pháp: Tìm phương giao tuyến cách sử dụng định lí: Nếu mặt phẳng song song bị cắt mặt phẳng thứ ba giao tuyến song song Sử dụng định lí để xác định thiết diện hình chóp bị cắt mặt phẳng song song với mặt phẳng cho trước Cho hình chóp S.ABCD, có đáy hình bình hành tâm O với AC = a, BD = b Tam giác SBD Một mặt phẳng (P) di động song song với mp(SBD) qua điểm I đoạn AC a) Xác định thiết diện hình chóp với (P) b) Tính diện tích thiết diện theo a, b x = AI HD: a) Xét trường hợp: I OA, I OC Thiết diện tam giác b2 x a x b) Sthieát dieän a b (a x ) neáu a x a a2 17 DeThiMau.vn Hình học 11 Trần Só Tùng Cho hai mặt phẳng song song (P) (Q) Tam giác ABC nằm (P) đoạn thẳng MN nằm (Q) a) Tìm giao tuyến (MAB) (Q); (NAC) (Q) b) Tìm giao tuyến (MAB) (NAC) Từ bốn đỉnh hình bình hành ABCD vẽ bốn nửa đường thẳng song song chiều Ax, By, Cz, Dt không nằm (ABCD) Một mặt phẳng (P) cắt bốn nửa đường thẳng A, B, C, D a) Chứng minh (Ax,By) // (Cz,Dt) b) Chứng minh ABCD hình bình hành c) Chứng minh: AA + CC = BB + DD Cho tứ diện ABCD Gọi G1, G2, G3 trọng tâm tam giác ABC, ACD, ADB a) Chứng minh (G1G2G3) // (BCD) b) Tìm thiết diện tứ diện ABCD với mp(G1G2G3) Tính diện tích thiết diện biết diện tích tam giác BCD S c) M điểm di động bên tứ diện cho G1M song song với mp(ACD) Tìm tập hợp điểm M 4S HD: b) Cho lăng trụ ABC.ABC Gọi H trung điểm AB a) Chứng minh CB // (AHC) b) Tìm giao điểm AC với (BCH) c) Mặt phẳng (P) qua trung điểm CC song song với AH CB Xác định thiết diện tỉ số mà đỉnh thiết diện chia cạnh tương ứng lăng trụ HD: c) M, N, P, Q, R theo thứ tự chia đoạn CC, BC, AB, AB, AC theo tỉ số 1, 1, 3, , Cho hình hộp ABCD.ABCD a) Chứng minh hai mặt phẳng (BDA) (BDC) song song b) Chứng minh đường chéo AC qua trọng tâm G1, G2 tam giác BDA, BDC Chứng minh G1, G2 chia đoạn AC làm ba phần c) Xác định thiết diện hình hộp cắt mp(ABG2) Thiết diện hình gì? HD: c) Hình bình hành Cho hình lập phương ABCD.ABCD cạnh a Trên AB, CC, CD, AA lấy điểm M, N, P, Q cho AM = CN = CP = AQ = x (0 x a) a) Chứng minh bốn điểm M, N, P, Q đồng phẳng MP, NQ cắt điểm cố định b) Chứng minh mp(MNPQ) chứa đường thẳng cố định Tìm x để (MNPQ) // (ABC) c) Dựng thiết diện hình lập phương cắt (MNPQ) Thiết diện có đặc điểm gì? Tính giá trị lớn nhỏ chu vi thiết diện HD: a) MP NQ cắt tâm O hình lập phương a b) (MNPQ) qua trung điểm R, S BC AD x = c) Thiết diện lục giác MRNPSQ có tâm đối xứng O Chu vi nhỏ nhất: 3a ; Cho lăng trụ ABC.ABC chu vi lớn nhất: 2a( + 1) 18 DeThiMau.vn Trần Só Tùng Hình học 11 a) Tìm giao tuyến (ABC) (BAC) b) Gọi M, N điểm AA BC Tìm giao điểm BC với mặt phẳng (AAN) giao điểm MN với mp(ABC) Cho lăng trụ ABC.ABC Chứng minh mặt phẳng (ABC), (BCA) (CAB) có điểm chung O đoạn GG nối trọng tâm ABC trọng tâm ABC Tính OG HD: OG BÀI TẬP ÔN Cho tứ diện ABCD có AB = 2a, tam giác BCD vuông C có BD = 2a, BC = a Goïi E AB, CE ) 600 trung điểm BD Cho biết ( a) Tính 2AC2 – AD2 theo a b) (P) mặt phẳng song song với AB CE, cắt cạnh BC, BD, AE, AC theo thứ tự M, N, P, Q Tính diện tích tứ giác MNPQ theo a x = BM (0 < x < a) Xác định x để diện tích lớn c) Tìm x để tổng bình phương đường chéo MNPQ nhỏ d) Gọi O giao điểm MP NQ Tìm (P) để OA2 + OB2 + OC2 + OD2 nhỏ HD: a) Gọi F trung điểm AD 1200 2AC2 – AD2 = 6a2 hoaëc –2a2 Xeùt CEF 600 , CEF a a c) x = ;x 2 2 2 2 d) OA + OB + OC + OD = 4OG + GA + GB2 + GC2 + GD2 O di động đoạn IJ nối trung điểm AB CE Tổng nhỏ O hình chiếu G lên IJ ( G trọng tâm tứ diện ABCD) Cho tứ diện ABCD cạnh a Gọi I, J trọng tâm tam giác ABC DBC Mặt phẳng (P) qua IJ cắt cạnh AB, AC, DC, DB taïi M, N, P, Q a) Chứng minh MN, PQ, BC đồng qui song song MNPQ thường hình thang cân 4a 3a xy b) Đặt AM = x, AN = y CMR: a(x + y) = 3xy Suy ra: c) Tính diện tích tứ giác MNPQ theo a s = x + y b) S = x(a – x) 2a s 8as s Cho hình chóp S.ABCD Tứ giác đáy có AB CD cắt E, AD BC cắt F, AC BD cắt G Mặt phẳng (P) cắt SA, SB, SC A, B, C a) Tìm giao điểm D SD với (P) b) Tìm điều kiện (P) để AB // CD c) Với điều kiện (P) ABCD hình bình hành? CMR đó: SA SC SB SD SA SC SB SD HD: b) SAMN = SAMI + SANI c) 19 DeThiMau.vn Hình học 11 Trần Só Tùng d) Tính diện tích tứ giác ABCD HD: b) (P) // SE c) (P) // (SEF) Gọi G = ACBD Chứng minh: SA SC 2SG SA SC SG a2 32 Cho mặt phẳng (P) hai đường thẳng chéo d1, d2 cắt (P) A B Đường thẳng () thay đổi song song với (P), cắt d1 M, d2 N Đường thẳng qua N song song d1 cắt (P) N a) Tứ giác AMNN hình gì? Tìm tập hợp điểm N b) Xác định vị trí () để MN có độ dài nhỏ c) Gọi O trung điểm AB, I trung điểm MN Chứng minh OI đường thẳng cố định M di động d) Tam giác BMN vuông cân đỉnh B BM = a Tính diện tích thiết diện hình chóp B.AMNN với mặt phẳng qua O song song với mặt phẳng (BMN) HD: a) Hình bình hành Tập hợp điểm N d3, giao tuyến (P) với mặt phẳng qua d2 song song với d1 b) MN nhỏ AN vuông góc d3 taïi N d) SABCD = 3a2 Cho hình chóp S.ABCD, có đáy hình bình hành M P hai điểm di động MA PS AD SC cho: x (x > 0) MD PC a) CMR: MP luoân song song với mặt phẳng cố định (P) b) Tìm giao điểm I (SBD) với MP c) Mặt phẳng qua M song song với (P) cắt hình chóp SABCD theo thiết diện cắt BD J Chứng minh IJ có phương không đổi Tìm x để PJ song song với (SAD) d) Tìm x để diện tích thiết diện k lần diện tích SAB (k > cho trước) HD: a) Mặt phẳng (SAB) c) Phương SB; x = d) 1 k 1 k (0 < k < 1) k Cho hình chóp S.ABCD, có đáy ABCD hình vuông cạnh a, taâm O SA = SB = SC = SD = a Gọi M điểm đoạn AO (P) mặt phẳng qua M song song với AM k (0 < k < 1) AD vaø SO Đặt AO a) Chứng minh thiết diện hình chóp với (P) hình thang cân b) Tính cạnh thiết diện theo a k c) Tìm k để thiết diện ngoại tiếp đường tròn Khi tính diện tích thiết diện theo a d) x = ka a2 c) k= 1; Cho lăng trụ ABC.ABC Gọi M, N, P điểm nằm đoạn AB, AC, AM C N CP x BC cho AB AC CB a) Tìm x để (MNP) // (ABC) Khi tính diện tích thiết diện cắt mp(MNP), biết tam giác ABC tam giác cạnh a HD: b) a; (1 – k)a; 20 DeThiMau.vn Trần Só Tùng Hình học 11 b) Tìm tập hợp trung điểm NP x thay đổi 2a2 ; b) Đoạn thẳng nối trung điểm CC AB Cho lăng trụ ABCD.ABCD, có đáy hình thang với AD = CD = BC = a, AB = 2a Mặt phẳng (P) qua A cắt cạnh BB, CC, DD M, N, P a) Tứ giác AMNP hình gì? So sánh AM NP b) Tìm tập hợp giao điểm AN MP (P) di động c) CMR: BM + 2DP = 2CN HD: a) Hình thang AM = 2NP b) Đoạn thẳng song song với cạnh bên 5a c) DP = HD: a) x = 21 DeThiMau.vn ... đôi song song Nếu hai mặt phẳng cắt qua hai đường thẳng song song giao tuyến chúng song song với hai đường thẳng trùng với hai đường thẳng Hai đường thẳng phân biệt song song với đường thẳng. .. (P) đường thẳng qua A song song với (P) nằm mp(Q) qua A song song với (P) Nếu mặt phẳng cắt hai mặt phẳng song song cắt mặt phẳng giao tuyến chúng song song với Hai mặt phẳng song song chắn... Hình học 11 Trần Só Tùng III ĐƯỜNG THẲNG MẶT PHẲNG SONG SONG Định nghóa d // (P) d (P) = Tính chất Nếu đường thẳng d không nằm mặt phẳng (P) d song song với đường thẳng d nằm (P) d song