1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế

28 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 4,41 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THCS&THPT MỤC LỤC THỐNG NHẤT Trang A.MỞ ĐẦU 02 1- Lý chọn đề tài 02 2- Mục đích đề tài 02 3- Phạm vi đối tượng đề tài .02 SÁNG KIẾN KINH NGHIỆM 4- Phương pháp nghiên cứu 02 5- Đóng góp đề tài………………………………………… 03 B NỘI DUNG .03 1- Cơ sở lý thuyết 03 2- Nội dung đề tài 04 HƯỚNG DẪN HỌC SINH KHAI THÁC ỨNG DỤNG C KẾT LUẬNPHÂN VÀ KIẾN NGHỊ: .33 CỦA TÍCH ĐỂ TÍNH DIỆN TÍCH HÌNH PHẲNG D TÀI LIỆU KHẢO 34 VÀ THAM GIẢI MỘT SỐ BÀI TOÁN THỰC TẾ Người thực hiện: Nguyễn Văn Phúc Chức vụ: Tổ trưởng chuyên môn SKKN thuộc mơn: Tốn THANH HỐ NĂM 2019 download by : skknchat@gmail.com MỤC LỤC Nội dung PHẦN MỞ ĐẦU Trang 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu 2 PHẦN NỘI DUNG 2.1 Cơ sở lý luận 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Giải vấn đề 2.4 Hiệu của sáng kiến kinh nghiệm 23 KẾT LUẬN VÀ KIẾN NGHỊ 24 DANH MỤC TÀI LIỆU THAM KHẢO 25 DANH MỤC SKKN ĐÃ ĐƯỢC XẾP LOẠI 26 download by : skknchat@gmail.com PHẦN MỞ ĐẦU 1.1 Lý chọn đề tài: Trong chương trình phổ thơng, mơn Tốn có vai trị, vị trí ý nghĩa quan trọng Nó giúp học sinh tiếp thu tri thức rèn luyện kĩ toán học cần thiết, đồng thời góp phần phát triển lực trí tuệ chung phân tích, tổng hợp, trừu tượng hóa, khái qt hóa; rèn luyện đức tính cẩn thận, xác, tính kỉ luật, tính sáng tạo Học Tốn cịn giúp học sinh có tư logic, rành mạch, điều tạo tiền đề cho việc tiếp cận với lĩnh vực, tình thực tế trở nên dễ dàng Trong chương trình sách giáo khoa mơn Tốn viết lâu chưa chỉnh lý lại nên phần khai thác ứng dụng thực tiễn học hạn chế, bên cạnh đa số giáo viên dạy cịn nặng lý thuyết tính tốn, truyền thụ kiến thức chiều,chưa trọng đến khai thác ứng dụng thực tiễn Do đó, nhiều học sinh học đặt câu hỏi: “ Học nội dung để làm ?” em chưa thấy khơng thấy hết ứng dụng thực tế Toán học đẫn đến việc học Tốn đới với em trở nên gượng ép, nhàm chán Vì trình lên lớp, ngồi việc khuyến khích học sinh tính tích cực, chủ động sáng tạo nắm kiến thức bản, rèn luyện kĩ giải tốn giáo viên phải người khơi gợi học sinh vận dụng tốn để giải qut vấn đề thực tế Điều phù hợp với mục đích đổi phương pháp dạy học nhà trường giúp học sinh hứng thú từ việc học nhẹ nhàng đạt hiệu tốt     Tích phân phần quan trọng mơn Giải tích lớp 12 Các tốn tích phân nói chung tốn ứng dụng tích phân nói riêng đa dạng phong phú, thường có mặt kỳ thi THPT Quốc gia Những năm gần Bộ GD&ĐT triển khai hình thức thi trắc nghiệm mơn Tốn, tốn tích phân ứng dụng tích phân để giải toán thực tế toán hay song gây khơng khó khăn cho học sinh kể với học sinh khá- giỏi Từ thực tế nhiều năm giảng dạy mơn Tốn khối 12 ơn thi THPT Quốc gia xây dựng thành hệ thống toán áp dụng dạy chủ đề: Tích phân ứng dụng tích phân Trong phạm vi sáng kiến kinh nghiệm tơi xin trình bày phần chuyên đề với đề tài: “Hướng dẫn học sinh khai thác ứng dụng tích phân để tính diện tích hình phẳng giải số tốn thực tế” Đề tai nhằm xây dựng cho học sinh kiến thức lơgic, đầy đủ ứng dụng tích phân, giúp học sinh phát triển tư sáng tạo, biết vận dụng vào toán thực tế, đáp ứng u cầu đổi dạy học mơn Tốn đổi kỳ thi THPT Quốc gia 1.2 Mục đích nghiên cứu: Giúp học sinh hình thành phương pháp rèn luyện kỹ giải toán, bồi dưỡng lực tư sáng tạo Từ nâng cao khả giải tốn phần “Tích phân ứng dụng tích phân” mơn Tốn Giải tích lớp 12 Giúp học sinh nâng cao hứng thú học tập mơn Tốn, vận dụng kiến thức học để giải toán thực tế download by : skknchat@gmail.com 1.3 Đối tượng nghiên cứu: - Các dạng toán ứng dụng tích phân để tính diện tích hình phẳng - Các toán thực tế liên quan đến ứng dụng tích phân - Học sinh lớp 12A1 năm học 2017-2018 học sinh lớp 12A1 năm học 2018-2019 trường THCS&THPT Thống Nhất – Yên Định-Thanh Hóa trước sau áp dụng sáng kiến kinh nghiệm để phân tích, đánh giá 1.4 Phương pháp nghiên cứu - Phương pháp nghiên cứu tài liệu: Những tài liệu có liên quan đến đề tài: Sách giáo khoa Giải tích lớp 12 Cơ Nâng cao, tài liệu tham khảo - Phương pháp phân tích tổng hợp tập nhằm xây dựng hệ thống tập từ dễ đến khó - Phương pháp thực nghiệm sư phạm: Thường xuyên dự giờ, kiểm tra đánh giá để biết mức độ hiểu biết khả giải tốn ứng dụng tích phân học sinh cách giải vấn đề đồng nghiệp, từ để đánh giá xác kết phương pháp PHẦN NỘI DUNG 2.1 Cơ sở lí luận Trong chương trình Tốn Giải tích lớp 12 học sinh học chuyên đề Tích phân Ứng dụng tích phân hình học chun đề hay khó đồng thời có nhiều tốn thực tế vận dụng kiến thức phần để giải Vì để phát huy tính tích cực, chủ động, sáng tạo học sinh rèn luyện kỹ vận dụng kiến thức Toán học vào thực tiễn, q trình ơn luyện chuẩn bị kiến thức, kỹ cho học sinh tham gia kỳ thi THPT Quốc gia yêu cầu giáo viên phải hệ thống kiến thức, xây dựng hệ thống tập để giảng dạy chuyên đề cẩn thận chu đáo 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Qua nhiều năm giảng dạy môn Tốn theo dõi q trình học tập học sinh, tơi nhận thấy q trình giảng dạy giáo viên không hệ thống kiến thức, không xây dựng hệ thống tập rõ ràng, không khai ứng dụng Tốn học thực tế khó tạo hứng thú học tập cho học sinh đẫn đến em thấy “ngại” học Tốn, thường biết áp dụng cơng thức cách máy móc em khơng hiểu học chương này, chương ví dụ chương 3- Giải tích lớp 12: Nguyên hàm, tích phân ứng dụng để làm gì? Thậm chí, có em học xong chương trình THPT khơng thể tính diện tích ngơi nhà hay diện tích mảnh đất gia đình mình, trình học tập học sinh chỉ biết giải các bài toán sách vở mà chưa thấy mối liên hệ giữa kiến thức được học với thực tế đời sống Đặc biệt phần Tích phân Ứng dụng tích phân phần có nhiều ứng dụng thực tiễn Dẫn đến hiệu học tập, kết kiểm tra, thi không cao Với thực trạng để giúp học sinh học làm thi tốt phần Tích phân ứng dụng tích phân, theo giáo viên cần hệ thống kiến thức, xây dựng hệ thống tập hợp lý từ hình thành cho học sinh khả tư theo download by : skknchat@gmail.com dạng toán Việc rèn luyện tư qua q trình giải tốn giúp học sinh hồn thiện kỹ định hướng tìm lời giải tốn Trong sáng kiến kinh nghiệm tơi nêu số dạng tốn của: “ Ứng dụng tích phân để tính diện tích hình phẳng giải số toán thực tế” 2.3 Giải vấn đề Để thuận lợi cho trình học tập hệ thống hố kiến thức học sinh tơi chia tốn liên quan đến: “Ứng dụng tích phân để tính diện tích hình phẳng giải số toán thực tế” thành hai phần sau: Phần 1: ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG Hình phẳng giới hạn đường cong trục hoành Cho y = f(x) liên tục , nhận giá trị khơng âm x[a, b] Diện tích hình thang cong giới hạn đồ thị hàm số y = f(x); trục hoành hai đường thẳng x = a đường thẳng x = b S= Tổng qt: Diện tích hình phẳng giới hạn đồ thị y y = f(x) liên tục, trục hoành hai đường thẳng x = a; x=b y=f(x) x a b S= Bài 1: Tính diện tích hình phẳng giới hạn đồ thị hàm số f  x   x  x  trục Ox Lời giải Phương trình hồnh độ giao điểm x  x  x2  x     3 Do đó, diện tích cần tìm là: S   x  x  dx     x  x  3 dx  1 Bài 2: Tính diện tích hình phẳng giới hạn đường đường thẳng Lời giải Phương trình hồnh độ giao điểm: Khi trục hoành download by : skknchat@gmail.com Đặt Ta có Bài 3: Tính diện tích hình phẳng giới hạn bới đồ thị hàm số hoành đường thẳng , trục Lời giải Phương trình hồnh độ giao điểm đồ thị hàm số cho với trục hồnh Vậy diện tích hình phẳng cho Đặt Tương tự, ta có Suy Bài 4: Tính diện tích hình phẳng giới hạn đồ thị hàm số hoành đường thẳng , , trục Lời giải Đặt Xét ta có Diện tích hình phẳng download by : skknchat@gmail.com Diện tích hình phẳng giới hạn đường cong Cho hai hàm số y = f(x); y = g(x) liên tục đoạn Gọi D hình phẳng giới hạn hai đồ thị hàm số đường thẳng x = a, x = b Khi diện tích hình phẳng là: S= y y f(x) y= f(x) s a g(x) b x a O x b c O Bài 1: Tính diện tích hình phẳng giới hạn đường , , Lời giải Xét phương trình hồnh độ giao điểm ta có Khi diện tích hình phẳng cần tính là: Bài Tính diện tích hình phẳng giới hạn đồ thị hàm số đường thẳng Lời giải download by : skknchat@gmail.com Phương trình hồnh độ giao điểm hai đường Diện tích Bài 3: Tính diện tích hình phẳng giới hạn đường Lời giải Phương trình hồnh độ giao điểm hai đường Ta có diện tích hình phẳng cần tìm Bài 4: Tính diện tích hình phẳng giới hạn đường , Lời giải Phương trình hồnh độ giao điểm: Diện tích Đặt download by : skknchat@gmail.com Vậy Bài 5: Tính diện tích hình phẳng giới hạn đường: Lời giải Xét phương trình hồnh độ giao điểm ta có Quan sát hình vẽ ta thấy Vậy diện tích phần hình phẳng cần tính Bài 6: (trích đề tham khảo kỳ thi THPT quốc gia năm 2018) Cho hình hình phẳng giới hạn parabol , cung trịn có phương trình (với ) trục hồnh (phần tơ đậm hình vẽ) Tính diện tích hình download by : skknchat@gmail.com Lời giải: Ta có phương trình hồnh độ giao điểm Do đó: Tính Đặt Đổi cận Suy Bài 7: Cho hình phẳng giới hạn parabol có phương trình hình vẽ) Gọi ( với diện tích của, biết nửa đường elip ) trục hoành (phần tơ đậm ( với , , ) Tính download by : skknchat@gmail.com Khi Bài 5: Cho hình phẳng tơ đậm hình vẽ giới hạn đường có phương trình hình , Tính diện tích Lời giải Hoành độ giao điểm hai đồ thị hàm số Diện tích hình phẳng cần tính là: là: Bài tốn tỷ số diện tích Bài 1: Parabol chia hình trịn có tâm gốc tọa độ, bán kính thành hai phần có diện tích , Tìm tỉ số Lời giải Diện tích hình trịn Ta có Suy 12 download by : skknchat@gmail.com Vậy Bài 2: (trích đề thi minh họa kỳ thi THPT Quốc gia năm 2017) y Cho hình thang cong giới hạn đường , y=0, , Đường thẳng x=k (0

Ngày đăng: 29/03/2022, 20:24

HÌNH ẢNH LIÊN QUAN

Bài 3: Tính diện tích hình phẳng giới hạn bới các đồ thị hàm số , trục hoành và các đường thẳng . - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 3: Tính diện tích hình phẳng giới hạn bới các đồ thị hàm số , trục hoành và các đường thẳng (Trang 6)
Vậy diện tích của hình phẳng đã cho là - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
y diện tích của hình phẳng đã cho là (Trang 6)
Cho hai hàm số y= f(x); y= g(x) đều liên tục trên đoạ n. Gọi D là hình phẳng giới hạn bởi hai đồ thị hàm số đó và các đường thẳng x = a, x = b - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
ho hai hàm số y= f(x); y= g(x) đều liên tục trên đoạ n. Gọi D là hình phẳng giới hạn bởi hai đồ thị hàm số đó và các đường thẳng x = a, x = b (Trang 7)
2 Diện tích hình phẳng giới hạn bởi 2 đường cong. - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
2 Diện tích hình phẳng giới hạn bởi 2 đường cong (Trang 7)
Ta có diện tích hình phẳng cần tìm là - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
a có diện tích hình phẳng cần tìm là (Trang 8)
Bài 3: Tính diện tích hình phẳng giới hạn bởi các đường. - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 3: Tính diện tích hình phẳng giới hạn bởi các đường (Trang 8)
Bài 5: Tính diện tích hình phẳng giới hạn bởi các đường :. - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 5: Tính diện tích hình phẳng giới hạn bởi các đường : (Trang 9)
Bài 7: Cho là hình phẳng giới hạn bởi parabol và nửa đường elip có phương trình  ( với ) và trục hoành (phần tô đậm trong hình vẽ) - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 7: Cho là hình phẳng giới hạn bởi parabol và nửa đường elip có phương trình ( với ) và trục hoành (phần tô đậm trong hình vẽ) (Trang 10)
3. Diện tích hình phẳng giới hạn bởi ba đường cong tự cắt khép kín. - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
3. Diện tích hình phẳng giới hạn bởi ba đường cong tự cắt khép kín (Trang 11)
Bài 2:Tính diện tích hình phẳng giới hạn bởi đồ thị và các tiếp tuyến của  tại  và . - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 2:Tính diện tích hình phẳng giới hạn bởi đồ thị và các tiếp tuyến của tại và (Trang 12)
Khi đó, dựa vào hình vẽ ta có diện tích hình phẳng cần tìm là: - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
hi đó, dựa vào hình vẽ ta có diện tích hình phẳng cần tìm là: (Trang 12)
Dựa vào hình vẽ, diện tích hình phẳng là: - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
a vào hình vẽ, diện tích hình phẳng là: (Trang 13)
Diện tích hình phẳng cần tính là: - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i ện tích hình phẳng cần tính là: (Trang 14)
Bài 5: Cho là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình  ,   - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 5: Cho là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình , (Trang 14)
Cho hình thang cong giới hạn bởi các đường  ,   y=0,  ,  .   Đường thẳng   x=k (0<k<ln4) chia    thành hai phần có diện tích là     và     như hình vẽ bên - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
ho hình thang cong giới hạn bởi các đường , y=0, , . Đường thẳng x=k (0<k<ln4) chia thành hai phần có diện tích là và như hình vẽ bên (Trang 15)
Hình chữ nhật có nên - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
Hình ch ữ nhật có nên (Trang 16)
Do đồ thị hàm số chia hình thành hai phần có diện tích bằng nhau - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
o đồ thị hàm số chia hình thành hai phần có diện tích bằng nhau (Trang 16)
Bài 1: Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 1: Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông (Trang 16)
Bài 2: Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 2: Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình (Trang 17)
Bài 3. Trong Công viên Toán học có những mảnh đất mang hình dáng khác - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 3. Trong Công viên Toán học có những mảnh đất mang hình dáng khác (Trang 18)
Bài 4: Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 4: Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều (Trang 18)
Biết các kích thước cho như hình vẽ và kinh phí để trồng hoa và trồng cỏ Nhật Bản tương ứng là 150.000 đồng/ m2 và  100.000 đồng/m2 - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i ết các kích thước cho như hình vẽ và kinh phí để trồng hoa và trồng cỏ Nhật Bản tương ứng là 150.000 đồng/ m2 và 100.000 đồng/m2 (Trang 20)
Đặt hệ trục tọa độ như hình vẽ. Khi đó phương trình nửa đường tròn là. . - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
t hệ trục tọa độ như hình vẽ. Khi đó phương trình nửa đường tròn là. (Trang 20)
Chọn hệ trục tọa độ như hình vẽ. - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
h ọn hệ trục tọa độ như hình vẽ (Trang 21)
ở chính giữa của một bức tường hình chữ nhật có chiều cao, chiều dài (hình vẽ bên). Cho biết  là hình chữ nhật có ; cung có hình dạng là một phần của cung parabol có đỉnh  là trung điểm của cạnh  và đi qua hai điểm  ,   - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
ch ính giữa của một bức tường hình chữ nhật có chiều cao, chiều dài (hình vẽ bên). Cho biết là hình chữ nhật có ; cung có hình dạng là một phần của cung parabol có đỉnh là trung điểm của cạnh và đi qua hai điểm , (Trang 22)
Bài 5: Một công ty quảng cáo X muốn làm một bức tranh trang trí hình - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 5: Một công ty quảng cáo X muốn làm một bức tranh trang trí hình (Trang 22)
Bài 6: Sân trường có một bồn hoa hình tròn tâ m. Một nhóm học sinh lớp 12 - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 6: Sân trường có một bồn hoa hình tròn tâ m. Một nhóm học sinh lớp 12 (Trang 23)
Bài 7. Một sân chơi dành cho trẻ em hình chữ nhật có chiều dài và chiều rộng là   người ta làm một con đường nằm trong sân (như hình vẽ) - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
i 7. Một sân chơi dành cho trẻ em hình chữ nhật có chiều dài và chiều rộng là người ta làm một con đường nằm trong sân (như hình vẽ) (Trang 24)
Câu 1: Tính diện tích hình phẳng giới hạn bởi Parabol (P): , các đường thẳng , và trục . - (SKKN mới NHẤT) SKKN hướng dẫn học sinh khai thác ứng dụng của tích phân để tính diện tích hình phẳng và giải một số bài toán thực tế
u 1: Tính diện tích hình phẳng giới hạn bởi Parabol (P): , các đường thẳng , và trục (Trang 25)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w