ưngs dựng tích phân là phần rất hay!! tài liệu này sẽ chía sẻ cho các bạn những ứng dụng đặc biệt của tích phân
Chuyên đề 13: TÍCH PHÂN VÀ ỨNG DỤNG TÓM TẮT GIÁO KHOA I. Bảng tính nguyên hàm cơ bản: Bảng 1 Bảng 2 Hàm số f(x) Họ nguyên hàm F(x)+C Hàm số f(x) Họ nguyên hàm F(x)+C a ( hằng số) ax + C x α 1 1 x C α α + + + ()ax b α + a 1 1 () 1 ax b C α α + + + + 1 x ln x C+ 1 ax b + 1 ln ax b C a ++ x a ln x a C a + x e x eC+ ax b e + 1 ax b eC a + + sinx -cosx + C sin(ax+b) 1 cos( )ax b C a −+ + cosx Sinx + C cos(ax+b) 1 sin( )ax b C a ++ 2 1 cos x tgx + C 2 1 cos ( )ax b + 1 ()tg ax b C a ++ 2 1 sin x -cotgx + C 2 1 sin ( )ax b + 1 cot ( )gax b C a −+ + ' () () ux ux ln ( )ux C+ 22 1 x a − 1 ln 2 x a C axa − + + tgx ln cos x C−+ 22 1 x a+ 22 ln x xa C+++ cotgx ln sin x C+ Phương pháp 1: • Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên hàm cơ bản • Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức và biến đổi lượng giác bằng các công thức lượng giác cơ bản. Ví dụ : Tìm họ nguyên hàm của các hàm số sau: 1. 3 1 () cos 1 fx x x x =+ +− 2. 2 2x 5 f(x) x4x3 − = − + 83 Phương pháp 2: Sử dụng cách viết vi phân hóa trong tích phân Ví dụ: Tính các tích phân: 1. 5 cos sin x xdx ∫ 2. cos tgx dx x ∫ 3. 1ln x dx x + ∫ I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG ĐN VÀ CÁC TÍNH CHẤT TÍCH PHÂN 1. Đònh nghóa: Cho hàm số y=f(x) liên tục trên [ ] ;ab . Giả sử F(x) là một nguyên hàm của hàm số f(x) thì: [] () () () () b b a a f xdx Fx Fb Fa==− ∫ ( Công thức NewTon - Leiptnitz) 2. Các tính chất của tích phân: • Tính chất 1: Nếu hàm số y=f(x) xác đònh tại a thì : () 0 b a fxdx = ∫ • Tính chất 2: () () ba ab f xdx f xdx=− ∫∫ • Tính chất 3: Nếu f(x) = c không đổi trên [ ] ;ab thì: () b a cdx c b a = − ∫ • Tính chất 4: Nếu f(x) liên tục trên [ ] ;ab và () 0 f x ≥ thì () 0 b a fxdx≥ ∫ • Tính chất 5: Nếu hai hàm số f(x) và g(x) liên tục trên [ ] ;ab và [ ] () () x a;bfx gx≥∀∈ thì () () bb aa f xdx gxdx≥ ∫∫ • Tính chất 6: Nếu f(x) liên tục trên [ ] ;ab và ( ) ( m,M là hai hằng số)mfx M ≤ ≤ thì () () () b a mb a f xdx Mb a − ≤≤ ∫ − • Tính chất 7: Nếu hai hàm số f(x) và g(x) liên tục trên [ ] ;ab thì [] () () () () bb aa b a f x gx dx f xdx gxdx±= ± ∫∫∫ • Tính chất 8: Nếu hàm số f(x) liên tục trên [ ] ;ab và k là một hằng số thì .() . () bb aa kf xdx k f xdx= ∫∫ • Tính chất 9: Nếu hàm số f(x) liên tục trên [ ] ;ab và c là một hằng số thì () () () bcb aac f xdx f xdx f xdx=+ ∫∫∫ • Tính chất 10: Tích phân của hàm số trên [ ] ;ab cho trước không phụ thuộc vào biến số , nghóa là : ( ) ( ) ( ) bbb aaa f x dx f t dt f u du== ∫∫∫ = 84 Bài 1: Tính các tích phân sau: 85 1) 1 3 0 x dx (2x 1)+ ∫ 2) 1 0 x dx 2x 1+ ∫ 3) 1 0 x1 xdx− ∫ 4) 1 2 0 4x 11 dx x5x6 + ++ ∫ 5) 1 2 0 2x 5 dx x4x4 − −+ ∫ 6) 3 3 2 0 x dx x2x1++ ∫ 7) 6 66 0 (sin x cos x)dx π + ∫ 8) 3 2 0 4sin x dx 1cosx π + ∫ 9) 4 2 0 1sin2x dx cos x π + ∫ 10) 2 4 0 cos 2xdx π ∫ 11) 2 6 1sin2xcos2x dx sinx cosx π π ++ + ∫ 12) 1 x 0 1 dx e1+ ∫ . 13) dxxx )sin(cos 4 0 44 ∫ − π 14) ∫ + 4 0 2sin21 2cos π dx x x 15) ∫ + 2 0 13cos2 3sin π dx x x 16) ∫ − 2 0 sin25 cos π dx x x 17) ∫ −+ − 0 2 2 32 4 dx x x 18) ∫ + + − 1 1 2 52 x x dx Bài 2: 1) 3 2 3 x1dx − − ∫ 2) 4 2 1 x3x2dx − −+ ∫ 3) 5 3 (x 2 x 2)dx − +−− ∫ 4) 2 2 2 1 2 1 x2 x +− ∫ dx 5) 3 x 0 24dx− ∫ 6) 0 1 cos2xdx π + ∫ 7) 2 0 1sinxdx π + ∫ 8) dxxx ∫ − 2 0 2 Bài 3: 1) Tìm các hằng số A,B để hàm số f(x) Asin x B = π+ thỏa mãn đồng thời các điều kiện và ' f(1) 2= 2 0 f(x)dx 4 = ∫ 2) Tìm các giá trò của hằng số a để có đẳng thức : 2 23 0 [a (4 4a)x 4x ]dx 12 + −+ = ∫ II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ : 1) DẠNG 1:Tính I = bằng cách đặt t = u(x) b ' a f[u(x)].u (x)dx ∫ Công thức đổi biến số dạng 1: [] ∫ = ∫ )( )( )()('.)( bu au b a dttfdxxuxuf Cách thực hiện: Bước 1: Đặt t dxxudtxu )()( ' =⇒= Bước 2: Đổi cận : )( )( aut but ax bx = = ⇒ = = Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được [] ∫ = b fI (tiếp tục tính tích phân mới) ∫ = )( )( )()('.)( bu aua dttfdxxuxu Tính các tích phân sau: 1) 2 32 0 cos xsin xdx π ∫ 2) 2 5 0 cos xdx π ∫ 3) 4 2 0 sin 4x dx 1cosx π + ∫ 4) 1 32 0 x1xdx− ∫ 5) 2 23 0 sin2x(1 sin x) dx π + ∫ 6) 4 4 0 1 dx cos x π ∫ 7) e 1 1lnx dx x + ∫ 8) 4 0 1 dx cosx π ∫ 9) e 2 1 1lnx dx x + ∫ 10) 11) 1 536 0 x(1 x)dx− ∫ 6 2 0 cosx dx 6 5sinx sin x π −+ ∫ 12) 3 4 0 tg x dx cos2x ∫ 13) 4 0 cos sin 3sin2 x x dx x π + + ∫ 14) ∫ + 2 0 22 sin4cos 2sin π dx xx x 15) ∫ −+ − 5ln 3ln 32 xx ee dx 16) ∫ + 2 0 2 )sin2( 2sin π dx x x 17) ∫ 3 4 2sin )ln( π π dx x tgx 18) ∫ − 4 0 8 )1( π dxxtg 19) ∫ + − 2 4 2sin1 cossin π π dx x xx 20) ∫ + + 2 0 cos31 sin2sin π dx x xx 21) ∫ + 2 0 cos1 cos2sin π dx x xx 22) ∫ + 2 0 sin cos)cos( π xdxxe x 23) ∫ −+ 2 1 11 dx x x 24) ∫ + e dx x xx 1 lnln31 25) ∫ + − 4 0 2 2sin1 sin21 π dx x x 2) DẠNG 2: Tính I = bằng cách đặt x = b a f(x)dx ∫ (t) ϕ Công thức đổi biến số dạng 2: [] ∫ = ∫ = β α ϕϕ dtttfdxxfI b a )(')()( Cách thực hiện: Bước 1: Đặt dttdxtx )()( ' ϕϕ =⇒= Bước 2: Đổi cận : α β = = ⇒ = = t t ax bx Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được (tiếp tục tính tích phân mới) [] ∫ = ∫ = β α ϕϕ dtttfdxxfI b a )(')()( Tính các tích phân sau: 1) 1 2 0 1xdx− ∫ 2) 1 2 0 1 dx 1x + ∫ 3) 1 2 0 1 dx 4x − ∫ 4) 1 2 0 1 dx xx1 −+ ∫ 5) 1 42 0 x dx xx1 ++ ∫ 6) 2 0 1 1cos sin dx x x π ++ ∫ 7) 2 2 2 2 0 x dx 1x− ∫ 8) 2 22 1 x4xdx− ∫ 86 9) 2 3 2 2 1 dx xx 1 − ∫ 10) 3 2 2 1 93x dx x + ∫ 11) 1 5 0 1 (1 ) x dx x − + ∫ 12) 2 2 2 3 1 1 dx xx− ∫ 13) 2 0 cos 7cos2 x dx x π + ∫ 14) 1 4 6 0 1 1 x dx x + + ∫ 15) 2 0 cos 1cos x dx x π + ∫ 16) ∫ + + − 0 1 2 22 x x dx 17) ∫ ++ 1 0 311 x dx 18) ∫ − − 2 1 5 1 dx x xx II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP VI PHÂN: Tính các tích phân sau: 1) 8 2 3 1 1 dx xx + ∫ 2) 7 3 32 0 1 x dx x+ ∫ 3) 3 52 0 1 x xdx+ ∫ 4) ln2 x 0 1 dx e2 + ∫ 5) 7 3 3 0 1 31 x dx x + + ∫ 6) 2 23 0 1 x xd+ ∫ x 7) ∫ + 32 5 2 4xx dx III. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN: Công thức tích phân từng phần: [] ∫∫ −= b a b a b a dxxuxvxvxudxxvxu )(').()().()(').( Hay: [] ∫∫ −= b a b a b a vduvuudv . Cách thực hiện: Bước 1: Đặt )( )(' )(' )( xvv dxxudu dxxvdv xuu = = ⇒ = = Bước 2: Thay vào công thức tích phân từng từng phần : [] ∫∫ −= b a b a b a vduvuudv . Bước 3: Tính [ và ] b a vu. ∫ b a vdu Tính các tích phân sau: 1) 2 5 1 lnx dx x ∫ 2) 2 2 0 xcos xdx π ∫ 3) 1 x 0 esinxdx ∫ 4) 2 0 sin xdx π ∫ 5) 6) e 2 1 xln xdx ∫ 3 2 0 xsinx dx cos x π + ∫ 87 7) 8) 2 0 xsinxcos xdx π ∫ 4 2 0 x(2cos x 1)dx π − ∫ 9) 2 2 1 ln(1 x) dx x + ∫ 10) 11) 12) 1 22x 0 (x 1) e dx+ ∫ e 2 1 (xlnx) dx ∫ 2 0 cosx.ln(1 cosx)dx π + ∫ 13) 2 1 ln (1) e e x dx x + ∫ 14) 1 2 0 x tg xdx ∫ 15) ∫ − 1 0 2 )2( dxex x 16) 17) ∫ + 1 0 2 )1ln( dxxx ∫ e dx x x 1 ln 18) ∫ + 2 0 3 sin)cos( π xdxxx 19) 20) ∫ ++ 2 0 )1ln()72( dxxx ∫ − 3 2 2 )ln( dxxx MỘT SỐ BÀI TOÁN TÍCH PHÂN QUAN TRỌNG VÀ ỨNG DỤNG Bài 1: 1) CMR nếu f(x) lẻ và liên tục trên [-a;a] (a>0) thì : a a f(x)dx 0 − = ∫ 2) CMR nếu f(x) chẵn và liên tục trên [-a;a] (a>0) thì : aa a0 f(x)dx 2 f(x)dx − = ∫∫ Bài 2: 1) CMR nếu f(t) là một hàm số liên tục trên đọan [0,1] thì: a) 22 00 f(sinx)dx f(cosx)dx ππ = ∫∫ b) 00 xf(sinx)dx f(sinx)dx 2 ππ π = ∫∫ ÁP DỤNG: Tính các tích phân sau: 88 1) n 2 + nn 0 cos x dx với n Z cos x sin x π ∈ + ∫ 2) 4 2 44 0 cos x dx cos x sin x π + ∫ 3) 6 2 66 0 sin x dx sin x cos x π + ∫ 4) 5) 5 0 xsin xdx π ∫ 2 2 2 4sin xcosx dx x π π − + − ∫ 6) 1 4 2 1 sin 1 x x dx x − + + ∫ 7) 2 0 xsinx dx 4cosx π − ∫ 8) 43 0 cos sin x xxd π ∫ x Bài 3:CMR nếu f(x) liên tục và chẵn trên R thì + 0 () ( ) với R và a > 0 1 x fx dx f x dx a αα α α − =∈ + ∫∫ ; a1 ≠ ÁP DỤNG : Tính các tích phân sau: 2) 1 2 1 1 12 x x dx − − + ∫ 3) 2 sin 31 x x dx π π − + ∫ 1) 1 4 1 21 x x dx − + ∫ IV .ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG: Công thức: 89 1 C y 2 C y 2 C x 1 C x ] dxxgxfS )()( [ ∫ −= b a [] ∫ −= b a dyygyfS )()( Tính diện tích của các hình phẳng sau: 1) (H 1 ): 2 2 x y4 4 x y 42 ⎧ =− ⎪ ⎪ ⎨ ⎪ = ⎪ ⎩ 2) (H 2 ) : 2 yx4x3 yx3 ⎧ = −+ ⎪ ⎨ =+ ⎪ ⎩ 3) (H 3 ): 3x 1 y x1 y0 x0 − − ⎧ = ⎪ − ⎪ = ⎨ ⎪ = ⎪ ⎩ 4) (H 4 ): 5) (H 2 2 yx xy ⎧ = ⎪ ⎨ =− ⎪ ⎩ 5 ): 2 yx y2x ⎧= ⎪ ⎨ = − ⎪ ⎩ 6) (H 6 ): 2 yx50 xy30 ⎧ + −= ⎨ + −= ⎩ 7) (H 7 ): lnx y 2x y0 xe x1 ⎧ = ⎪ ⎪ ⎪ = ⎨ ⎪ = ⎪ = ⎪ ⎩ 8) (H 8 ) : 2 2 yx 2x yx4 ⎧ =− ⎪ ⎨ x = −+ ⎪ ⎩ 9) (H 9 ): 2 33 yx x 2 yx ⎧ 2 = +− ⎪ ⎨ ⎪ = ⎩ 10) (H 10 ): 11) 2 y2yx0 xy0 ⎧ −+= ⎨ += ⎩ ⎪ ⎩ ⎪ ⎨ ⎧ −= = )( 2:)( :)( Ox xyd xyC 12) ⎪ ⎩ ⎪ ⎨ ⎧ =Δ = = 1:)( 2:)( :)( x yd eyC x V. ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY. Công thức: ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ =Δ =Δ = = bx ax xgyC xfyC H : : )(:)( )(:)( :)( 2 1 2 1 ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ =Δ =Δ = = by ay ygxC yfxC H : : )(:)( )(:)( :)( 2 1 2 1 x y )(H a b )(:)( 1 yfxC = )(:)( 2 ygxC = a y = by = O y x x )(H a b )(:)( 1 xfyC a = = )(:)( 2 xgyC bx = O = b a x y 0 = x O )(:)( yfxC = by = a y = a b 0 =y )(:)( xfyC = b a x = bx = x y O [] dxxfV b a 2 )( ∫ = π [] dyyfV b a 2 )( ∫ = π Bài 1: Cho miền D giới hạn bởi hai đường : x 2 + x - 5 = 0 ; x + y - 3 = 0 Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Bài 2: Cho miền D giới hạn bởi các đường : y x;y 2 x;y 0 = =− = Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Oy Bài 3: Cho miền D giới hạn bởi hai đường : và y = 4 2 y(x2)=− Tính thể tích khối tròn xoay được tạo nên do D quay quanh: a) Trục Ox b) Trục Oy Bài 4: Cho miền D giới hạn bởi hai đường : 22 4;yxyx2 = −=+. Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Bài 5: Cho miền D giới hạn bởi các đường : 2 2 1 ; 12 x yy x == + Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Hết 90