dung dịch KNO3bão hòa (nhằm tạo môi trường có độ ẩm không đổi 95%). Xác định khối lượng của P2O5sau 1 giờ, 2 giờ, 3 giờ, 4 giờ và 5 giờ ở môi trường độ ẩm 95%. Xây dựng đồ thị biểu diễn sự phụ thuộc khối lượng hơi nước thẩm thấu qua màng theo thời gian, sau đó xác định góc α của đoạn thẳng tuyến tính. Độ thẩm thấu hơi nước qua màng polyme là khối lượng hơi nước đi qua 1 cm2 diện tích màng trong 1 giờ và bằng tgα (g/cm2.h). Bảng 3.12 là kết quả đo độ thẩm thấu hơi nước qua màng PVA/TB ứng với các hàm lượng tác nhân khâu mạch GA khác nhau.
Bảng 3.12 Mối tương quan giữa tính chất thẩm thấu hơi nước của màng PVA/TB với hàm lượng GA
Tên mẫu
Thành phần Hàm lượng GA theo khối lượng PVA + TB, [%]
Độ thẩm thấu hơi nước, [g/cm2.h] TT1 PVA 0,0 0,59.10-4 TT2 PVA/TB/GL/GA 0,1 2,83.10-4 TT3 PVA/TB/GL/GA 0,2 2,96.10-4 TT4 PVA/TB/GL/GA 0,3 3,15.10-4 TT5 PVA/TB/GL/GA 0,4 3,02.10-4 TT6 PVA/TB/GL/GA 0,5 2,98.10-4 TT7 PVA/TB/GL/GA 0,7 1,57.10-4 TT8 PVA/TB/GL/GA 1,0 1,14.10-4
Từ bảng 3.12 cho thấy: Đối với màng PVA khả năng thẩm thấu hơi nước thấp hơn rất nhiều so với màng PVA biến tính tinh bột sắn sử dụng glutaraldehyt làm tác nhân tạo lưới, điều này cho thấy màng PVA/TB cấu trúc dạng mạng lưới, xốp có khả năng thẩm thấu hơi nước tốt hơn. Khi hàm lượng GA tăng từ 0,1% lên 0,3%, độ thẩm thấu hơi nước của màng PVA/TB tăng từ 2,83.10-4 g/cm2.h lên 3,15.10-4g/cm2.h. Điều này chứng tỏ khi hàm lượng GA tăng thúc đẩy phản ứng khâu mạch với độ tạo lưới cao hơn làm các đoạn mạch kém linh động hơn nên độ thẩm thấu hơi nước của màng PVA/TB tăng. Tuy nhiên, khi tiếp tục tăng hàm lượng GA lên từ 0,3% lên 1,0%, độ thẩm thấu hơi nước của màng PVA/TB lại có xu hướng giảm từ 3,15.10-4 g/cm2.h xuống 1,14.10-4g/cm2.h. Nguyên nhân là do khi hàm lượng GA tăng nhiều nên cấu trúc mạng lưới dày đặc, làm cho khả năng hơi nước xen vào giữa các nút mạng giảm đi, do đó khả năng thẩm thấu hơi nước kém đi.