P hn mềm gắn kết AutoDock và động lực phân tử GROMACS
TÀI IỆU THAM KHẢO Tiếng Việt
Tiếng Việt
1. Trần Thành Huế (2003), Hóa học đại cương, Tập 1, Nhà xuất bản Giáo dục, Hà Nộị
2. Lâm Ngọc Thiềm (1999), Những nguyên lý cơ bản của Hóa học- Cấu
tạo nguyên tử và liên kết hóa học, Nhà xuất bản Khoa học và Kỹ thuật,
Hà Nộị
3. Đào Đình Thức (1980), Cấu tạo nguyên tử và liên kết hóa học, tập 2, Nhà xuất bản Đại học và Trung học chuyên nghiệp., Hà Nộị
4. Mai Tuyên (2007), Hóa học các hợp chất có hoạt tính kháng khuẩn và
khử trùng, Nhà xuất bản Khoa học và Kỹ thuật, Hà Nộị
5. Đặng Ứng Vận (1998), Tin học Ứng dụng trong Hóa học, Nhà xuất bản Giáo Dục, Hà Nộị
6. Đặng Ứng Vận (2003), Động lực học các phản ứng hóa học, Nhà xuất bản Giáo Dục, Hà Nộị
7. Đặng Ứng Vận (2006), Giáo trình Hóa tin cơ sở, Nhà xuất bản Đại học Quốc gia Hà Nộị
8. Đặng Ứng Vận (2001), Kĩ thuật mô phỏng vật liệu bằng phương pháp
động lực phân tử, Nhà xuất bản Đại học Quốc Gia Hà Nộị
9. Đặng Ứng Vận (2001), Phương pháp hóa tin lượng tử nghiên cứu các
phản ứng hóa học, Hà Nộị
10. Đặng Ứng Vận (2010), Tài liệu hướng dẫn sử dụng Gromacs, Trung tâm Ứng dụng tin học trong Hóa học, Hà Nộị
Tiếng Anh
11. Amara P., Field M. J. (2003), “Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method”,
141
12. Antes Ị, Thiel W. (1999), “Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods”, J. Phys.
Chem. A, 103, pp. 9290–9295.
13. Aruksakunwong Ọ, Malaisree M., Decha P., Sompornpisut P., Parasuk V., Pianwanit S., Hannongbuay S. (2007), Biophysical Journal, 92, pp. 798–807.
14. Baker N.Ạ, Sept D., Joseph S., Holst M.J., McCammon J.Ạ (2001),
Proc. Natl. Acad. Scị USA, 98, pp. 10037-10041.
15. Bakowies D., Thiel W. (1996), “Hybrid models for combined quantum mechanical and molecular mechanical approaches”, J. Phys. Chem, 100, pp. 10580–10594.
16. Bas D. C., Rogers D. M., Jensen J. H. (2008), “Very Fast Prediction and Rationalization of pKa Values for Protein–Ligand Complexes”, Proteins, 73 (3), pp. 765-783.
17. Becke Ạ D. (1993), “Density-Functional Thermochemistrỵ IIỊ The Role of Exact Exchange”, J. Chem. Phys, 98, pp. 5648-5652.
18. Car R., Parrinello M. (1985), “Unified Approach for Molecular Dynamics and DensityFunctional Theory”, Phys. Rev. Lett, 55, pp. 2471–2474.
19. Cornell W. D., Cieplak P., Bayly C. Ị, Gould Ị R., Merz K. M., Jr., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. Ạ (1995), “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules”, J. Am. Chem. Soc, 117, pp. 5179-5197.
20. Crisostomo M. Ị, Westh H., Tomasz Ạ, Chung M., Oliveira D. C., de Lencastre H. (2001), “The Evolution of Methicillin Resistance in Staphylococcus aureus: Similarity of Genetic Backgrounds in Historically
142
Early Methicillin-Susceptible and Resistant Isolates and Contemporary
Epidemic Clones”, Proc. Natl. Acad. Scị ỤS.A, 98, pp. 9865-9870.
21. Cui Q., Karplus M. (2000), “Molecular Properties from Combined QM/MM Methods. 2. Chemical Shifts in Large Molecules”, J. Phys.
Chem. B, 104, pp. 3721–3743.
22. Dapprich S., Koma ´ romi Ị, Byun K. S., Morokuma K., Frisch M. J. (1999), “A new ONIOM implementation in Gaussian98. Part Ị The calculation of energies, gradients, vibrational frequencies and electric field derivatives”, J. Mol. Struct. Theochem, pp. 461- 462, pp. 1- 21.
23. Das D., Eurenius K. P., Billings Ẹ M., Sherwood P., Chatfield D. C., Hodoscek M., Brooks B. R. (2002), “Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method”, J. Chem. Phys, 117, pp. 10534–10547.
24. de Jonge B. L. M, Tomasz Ạ (1993), Antimicrob. Agents Chemother, 37, pp. 342-346.
25. Derat Ẹ, Bouquant J., Humbel S. (2003), “On the link atom distance in the ONIOM schemẹ An harmonic approximation analysis”, J. Mol.
Struct. Theochem, 632, pp. 61–69.
26. DiLabio G. Ạ, Hurley M. M., Christiansen P. Ạ (2002), “Simple one- electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules”, J. Chem. Phys, 116, pp. 9578–9584.
27. Dolinsky T.J., Czodrowski P., Li H., Nielsen J.Ẹ, Jensen J.H., Klebe G.,
Baker N.Ạ (2007) Nucleic Acids Res, 35, pp. W522-525
28. Dolinsky T.J., Nielsen J.Ẹ, McCammon J.Ạ, Baker N.Ạ (2004), Nucleic
143
29. Drudis-Sole G., Ujaque G., Maseras F., Lledos Ạ (2005), “A QM/MM study of the Asymmetric Dihydroxylation of Terminal Aliphatic n- Alkenes with OsO4.(DHQD)2PYDZ: Enantioselectivity as a Function of Chain Length”, Chem. Eur. J, 11, 1017–1029.
30. Eichinger M., Tavan P., Hutter J., Parrinello M. (1999), “A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields”, J. Chem. Phys, 110, pp. 10452– 10467.
31. Eswar N., Webb B., Marti-Renom M. Ạ, Madhusudhan M. S., Eramian
D., Shen M. Ỵ, Pieper Ụ, Salị (2006), Ạ Current Protocols in
Bioinformatics, Wiley-Interscience: New York, Chapter 5, Unit 5.6.
32. Fernmann J. T., Moniz T., Kiowski Ọ, McIntire T. J., Auerbach S. M., Vreven T., Frisch M. J. (2005), “Modeling Proton Transfer in Zeolites: Convergence Behavior of Embeđed and Constrained Cluster Calculations”, J. Chem. Theory Comput, 1, pp. 1232–1239.
33. Field M. J., Bash P. Ạ, Karplus M. (1990), “A Combined Quantum- Mechanical and Molecular Mechanical Potential for Molecular-Dynamics Simulations”, J. Comput. Chem, 11, pp. 700–733.
34. Fisher J. F., Meroueh S. Ọ, Mobashery S. (2005), “Bacterial Resistance to β-Lactam Antibiotics Compelling Opportunism, Compelling Opportunity”, Chem. Rev, 105 (2), pp. 395-424.
35. Frank D. N., Feazel L. M., Bessesen M. T., PriceC. S., Janoff Ẹ N., Pace N. R. (2010), “The Human Nasal Microbiota and Staphylococcus aureus
Carriage”, PLoS One, 5, pp. e10598.
36. Frere J.M, Ghuysen J.M, Iwatsubo M. Eur. (1975), J. Biochem, 57, pp. 343-351.
144
37. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. Ẹ, Robb M. Ạ, Cheeseman J. R., Montgomery J. Ạ, Jr., Vreven T., Kudin K., Burant J. C., Millam J. M., Iyengay S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.Ạ, Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Ỵ, Kitao Ọ, Nakai H., Klene M., Li X., Knox J. Ẹ, Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Comperts R., Startmann R. Ẹ, Yazyev Ọ, Austin Ạ J., Cammi R., Pomelli C., Ochterski J. W., AyalaP. Ỵ, Morokuma K., Voth G. Ạ, Salvador P., Dannenbuerg J. J., Zakrzewski V. G., Dapprich S., Daniels Ạ D., Strain M. C., Farkas Ọ, Malick D. K., Rabuck Ạ D., Raghavachari K., Foresman J. B., OrtizJ. V., Cui Q., Baboul Ạ G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko Ạ, Piskorz P., Komaromi Ị, Martin R. L., Fox D. J., Keith T., Al-Laham M. Ạ, Peng C. Ỵ, Nanayakkara Ạ, Challacombe M., Gill P. M. W., Johnson B., Chem W., Wong M. W., Gonzalez C., Pople J. Ạ (2009), Gaussian 09, revision Ạ02; Gaussian, Inc: Wallingford, CT.
38. Fuda C., Hesek D., Lee M., Heilmayer W., Novak R., Vakulenko S. B., Mobashery S. (2006), “Mechanistic Basis for the Action of New Cephalosporin Antibiotics Effective Against Methicillin- and Vancomycin-resistant Staphylococcus aureus”, J. Biol. Chem, 281, pp. 10035–10041.
39. Fuda C., Suvorov M., Vakulenko S. B., Mobashery S. (2004), “The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus”, J. Biol. Chem, 279, pp. 40802–40806.
145
40. Gao J., Amara P., Alhambra C., Field M. J. (1998), “A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations”, J. Phys. Chem. A, 102, pp. 4714–4721.
41. Ghuysen J. M., Frere J. M., Leyh-Bouille, Nguyen-Disteche M., Coyette J. (1986), Biochem. J, 235, pp. 159-165.
42. Gilson, M. K., Sharp K., Honig B. (1987), J. Comput. Chem, 9, pp. 327– 335.
43. Graves-Woodward K., Pratt R. F. (1998), “Reaction of Soluble Penicillin- Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus with
-Lactams and Acyclic Substrates: Kinetics in Homogeneous Solution”,
Biochem. J, 332, pp. 755-761.
44. Graves-Woodward K., Pratt R. F. (1998), Biochem. J, 332, pp. 755-761.
45. Guignard B., Entenza J. M., Moreillon P. (2005), “β-Lactams Against Methicillin-Resistant Staphylococcus aureus”, Curr. Opin. Microbiol, 5, pp. 479-489.
46. Hehre W., Radom L., Schleyer P v. R., Pople J. Ạ (1986), Ab Initio
Molecular Orbital Theory, John Wiley & Sons: New York.
47. Hermann J. C., Hensen C., Riđer L., Mulholland Ạ J., Holtje H. D. (2005), “Mechanisms of Antibiotic Resistance: QM/MM Modeling of the Acylation Reaction of a Class A β-Lactamase with Benzylpenicillin”, J.
Am. Chem. Soc, 127, pp. 4454-4465.
48. Hermann J. C., Pradon J., Harvey J. N., Mulholland Ạ J. (2009), “High Level QM/MM Modeling of the Formation of the Tetrahedral Intermediate in the Acylation of Wild Type and K73A Mutant TEM-1 Class A β-Lactamase”, J. Phys. Chem. A, 113, pp. 11984-11994.
49. Hermann J. C., Riđer L., Hotje H. D., Mulholland Ạ J. (2006), “Molecular Mechanisms of Antibiotic Resistance: QM/MM Modelling of
146
Deacylation in a Class A β-Lactamase”, Org. Biomol. Chem, 4, pp. 206- 210.
50. Hermann J. C., Riđer L., Mulholland Ạ J., Holtje H. D. (2003), “Identification of Glu166 as the General Base in the Acylation Reaction of Class A β-Lactamases through QM/MM Modeling”, J. Am. Chem. Soc, 125 (32), pp. 9590-9591.
51. Hess, et al. (2008), J. Chem. Theory Comput, 4 435-447.
52. Hiramatsu K., Cui L., Kuroda M., Ito T. (2001), “The Emergence and
Evolution of Methicillin-Resistant Staphylococcus aureus”, Trends
Microbiol, 9, pp. 486-493.
53. Hopkins B. W., Tschumper G. S. (2003), “Multicentered Approach to Integrated QM/QM Calculations. Applications to Multiply Hydrogen Bonded Systems”, J. Comput. Chem, 24, pp. 1563.
54. http://www.dillgroup.ucsf.edu/group/wiki/index.php/Free_Energy:_Tutori al
55. Humbel S., Sieber S., Morokuma K. (1996), “The IMOMO method: Integration of different levels of molecular orbital approximations for geometry optimization of large systems: Test for n-butane conformation and S(N)2 reaction: RCl+Cl”, J. Chem. Phys, 105, pp. 1959–1967.
56. Humphrey W., Dalke Ạ, Schulten K. (1996), VMD - Visual Molecular Dynamics, J. Mol. Graphics, 14, pp. 33-38.
57. Jevons M. P. (1961), ““Celbenin” - Resistant Staphylococci”, Br. Med. J, 1, pp. 124-125.
58. Karadakov P. B., Morokuma K. (2000), “ONIOM as an efficient tool for calculating NMR chemical shielding constants in large molecules”, Chem. Phys. Lett, 317, pp. 589–596.
147
59. Kerdcharoen T., Liedl K. R., Rode B. M. (1996), “A QM/MM simulation method applied to the solution of Li+ in liquid ammonia”, Chemical Physics, 211, pp. 313–323.
60. Kerdcharoen T., Morokuma K. (2002), “ONIOM-XS: an extension of the ONIOM method for molecular simulation in condensed phase”, Chem. Phys. Lett, 355, pp. 257–262.
61. Koga N., Morokuma K. (1990), “A Simple Scheme of Estimating Substitution or Substituent Effects in the abinitio MO Method Based on the Shift Operator”, Chem. Phys. Lett, 172, pp. 243–248.
62. Kondo N et al. (2001), Antimicrob. Agents Chemother, 45, pp. 815-824.
63. Kruger T., Sax Ạ F. (2001), “Oligovalent Link Atoms in Embeđing Calculations”, J. Comput. Chem, 23, pp. 371–377.
64. Laio Ạ, Vandevondele J., Rothlisberger Ụ (2002), “A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations”, J. Chem. Phys, 116, pp. 6941–6947.
65. Landis C. R., Hilfenhaus P., Feldgus S. (1999), “Structures and Reaction Pathways in Rhodium(I)-Catalyzed Hydrogenation of Enamides: A Model DFT Study”, J. Am. Chem. Soc, 121, pp. 8741–8754.
66. Larkin S., Bearpark M. J., Vreven T., “Excited states and conical intersections using the ONIOM method”, Part 1, in preparation.
67. Lee C., Yang W., Parr R. G. (1988), “Correlation Functional”, Phys. Rev. B, 37, pp. 785-789.
68. Li H., Robertson Ạ D., Jensen J. H. (2005), “Very Fast Empirical Prediction and Rationalization of Protein pKa Values”, Proteins, 61, pp. 704-721.
148
69. Li J., Cross J. B., Vreven T., Meroueh S. Ọ, Mobashery S., Schlegel H. B. (2005), “Lysine Carboxylation in Proteins: OXA-10 b-Lactamase”,
Proteins, 61, pp. 246–257.
70. Lim D., Strynadka N. C. J. (2002), “Structural Basis for the β-Lactam Resistance of PBP2a from Methicillin-Resistant Staphylococcus aureus”,
Nature Struct. Biol, 9, pp. 870-876.
71. Lin H., Trulahr D. G. (2005), “Redistributed Charge and Dipole Schemes for Combined Quantum Mechanical and Molecular Mechanical Calculations”, J. Phys. Chem. A, 109, pp. 3991-4004.
72. Lu W. P., Sun Ỵ, Bauer M. D., Paule S., Koenigs P. M., Kraft W. G. (1999), “Penicillin-Binding Protein 2a from Methicillin-Resistant Staphylococcus aureus: Kinetic Characterization of Its Interactions with β-Lactams Using Electrospray Mass Spectrometry”, Biochemistry, 38, pp. 6537-6546.
73. Lu W.P, Kincaid Ẹ, Sun Ỵ, Bauer M.D. (2001), J.Biol. Chem, 276, pp. 31494-31501.
74. Maseras F., Morokuma K. (1995), “IMOMM - a New Integrated Ab-
Initio Plus Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and TransitionStates”, J. Comput. Chem, 16, pp. 1170–1179.
75. Meroueh S. Ọ, Fisher J. F., Schlegel H. B., Mobashery S. (2005), “Ab Initio QM/MM Study of Class A β-Lactamase Acylation: Dual Participation of Glu166 and Lys73 in a Concerted Base Promotion of Ser70”, J. Am. Chem. Soc, 127, pp. 15397-15407.
76. Mori S., Vreven T., Morokuma K., “Transition states of BINAP- rhodium(I)-catalyzed asymmetric hydrogenation. Theoretical studies on the origin of the enantioselectivity”, submitted.
149
77. Morris G. M. và cộng sự, AutoDock 4.2 Release 4.2.3 (c) 1989-2009 The Scripps Research Institutẹ
78. Nicoll R. M., Hindle S. Ạ, MacKenzie G., Hillier Ị H., Burton N. Ạ (2000), “Quantum mechanical/molecular mechanical methods and the study of kinetic isotope effects: modelling the covalent junction region and application to the enzyme xylose isomerase”, Theor. Chem. Acc, 106, pp. 105–112.
79. Pinho M. G., de Lencastre H., Tomasz, Ạ (2001), “An Acquired and A Native Penicillin-Binding Protein Cooperate in Building the Cell Wall of Drug-Resistant Staphylococci”, Proc. Natl. Acad. Scị USA, 98, pp. 10886-10891.
80. Prabhakar R., Musaev D. G., Khavrutskii Ị V., Morokuma K. (2004), “Does the Active Site of Mammalian Glutathione Peroxidase (GPx) Contain Water Molecules?”, J. Phys. Chem. B, 108, pp. 12643–12645.
81. Prabhakar R., Vreven T., Frisch M. J., Morokuma K., Musaev D. G., “Is the Protein Surrounding the Active-Site Critical for Hydrogen Peroxide Reduction by Selenoprotein Glutatione Peroxidase (GPx)? An ONIOM Study”, Submitted.
82. Prabhakar R., Vreven T., Morokuma K., Musaev D. G. (2005), “Elucidation of the Mechanism of Selenoprotein Glutathione Peroxidase (GPx) Catalyzed Hydrogen Peroxide Reduction by Two Glutathione Molecules: A Density Functional Study”, Biochemistry, 44, pp. 11864– 11871.
83. Prat-Resina X., Bofill J. M., Gonzalez-Lafont Ạ, Lluch J. M. (2004), “Geometry Optimization and Transition State Search in Enzymes: Different Options in the Microiterative Method”, Int. J. Quantum Chem.
150
84. Rega N., Iyengar S. S., Voth G. Ạ, Schlegel H. B., Vreven T., Frisch M. J. (2004), “Hybrid Ab-Initio/Empirical Molecular Dynamics: Combining the ONIOM Scheme with the Atom-centered Density Matrix Propagation (ADMP) Approach”, J. Phys. Chem. B, 108, pp. 4210–4220.
85. Reuter N., Dejaegere Ạ, Maigret B., Karplus M. (2000), “Frontier bonds in QM/MM methods: A comparison of different approaches”, J. Phys.
Chem. A, 104, pp. 1720–1735.
86. Rocchia, W., Alexov Ẹ, Honig B. (2001), J. Phys. Chem. B, 105, pp. 6507–6514.
87. Schlegel H. B. (2003), “Exploring potential energy surfaces for chemical reactions: An overview of some practical methods”, J. Comput. Chem, 24, pp. 1514–1527.
88. Schuettelkopf ẠW., van Aalten D.
http://davapc1.bioch.dundeẹac.uk/cgi-bin/ prodrg_betạ
89. Singh Ụ C., Kollman P. Ạ (1986), “A Combined Abinitio Quantum- Mechanical and Molecular Mechanical Method for Carrying out Simulations on Complex MolecularSystems - Applications to the Ch3Cl+Cl- Exchange-Reaction and Gas-Phase Protonation of Polyethers”, J. Comput. Chem, 7, pp. 718-730.
90. Sitkoff D., Sharp K. Ạ, Honig B. (1994), J. Phys.Chem, 98, pp. 1978– 1988.
91. Sousa S.F., Fernandes P.Ạ, Ramos M.J. (2006), “Protein-ligand docking: current status and future challenges”, Proteins, 65, pp. 15-26.
92. Svensson M., Humbel S., Froese R. D. J., Matsubara T., Sieber S., Morokuma K. (1996), “ONIOM: A multilayered integrated MƠMM method for geometry optimizations and single point energy predictions. A
151
test for Diels-Alder reactions and Pt(P(t-Bu)(3))(2)+ H-2 oxidative
ađition”, J. Phys. Chem, 100, pp. 19357–19363.
93. The Dill Group
http://www.dillgroup.ucsf.edu/group/wiki/index.php/Free_Energy:_Tutori al
94. Thery V., Rinaldi D., Rivail J. L., Maigret B., Ferenczy G. G. (1994), “Quantum-Mechanical Computations on Very Large Molecular-Systems - the Local Self-Consistent-Field Method”, J. Comput. Chem, 15, pp. 269– 282.
95. Tođ M. J., Luque L., Velazquez-Campoy Ạ, Freire Ẹ (2000),
Biochemistry, 39, pp. 11876–11883.
96. Toniolo Ạ, Granucci G., Martinez T. J. (2003), “Conical Intersections in Solution: A QM/ MM Study Using Floating Occupation Semiempirical Configuration Interaction Wave Functions”, J. Phys. Chem. A, 107, pp. 3822–3830.
97. Vosko S. H., Wilk L., Nusair M. (1980), “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: a Critical Analysis”, Can. J. Phys, 58, pp. 1200-1211.
98. Vreven T., Byun K. S., Koma ´ romi Ị, Dapprich S., Montgomery Jr J. Ạ, Morokuma K., Frisch M. J. (2006), “Combining Quantum Mechanics
Methods with Molecular Mechanics Methods in ONIOM”, J. Chem.
Theory Comput, 2, pp. 815-826.
99. Vreven T., Frisch M. J., Kudin K. N., Schlegel H. B, K. Morokumạ (2006), “Geometry Optimization with QM/MM Methods II: Explicit Quadratic Coupling”, Mol. Phys, 104, pp. 701–714.
100.Vreven T., Mennucci B., da Silva C. Ọ, Morokuma K., Tomasi J. (2001), “The ONIOMPCM method: Combining the hybrid molecular orbital
152
method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution”, J. Chem.