6. Kết cấu luận văn
2.4.2.3 Phương pháp phân tích nhân tố khẳng định CFA
Việc đánh giá độ phù hợp của mô hình với thông tin thị trường thường bằng các đo lường sau:
- Thống kê Chi bình phương - Chi-Square (CMIN): Thống kê Chi – bình phương là một đo lường về độ phù hợp tuyệt đối, nó cung cấp cơ sở để tin rằng sự khác biệt giữa ma trận dự báo và ma trận đầu vào là không có ý nghĩa. Yêu cầu là mức ý nghĩa (p) phải lớn hơn 0,05 thì mô hình được xem là có thể chấp nhận. Tuy nhiên, thống kê này rất nhạy với kích cỡ mẫu, việc sử dụng nó để đánh giá độ phù hợp chỉ thích hợp khi cỡ mẫu từ 100 đến 200. Khi cỡ mẫu lớn hơn mức này thì thống kê này thường có ý nghĩa (p < 0,05) mà nếu căn cứ vào nó để đánh giá thì dẫn đến một kết luận sai lầm là mô hình chung không phù hợp.
- Chỉ số độ phù hợp tốt GFI (Goodness of Fit Index): GFI là một chỉ số đo lường độ phù hợp tuyệt đối. Nó là một đo lường phi thống kê có giá trị trải dài từ 0 (độ phù hợp tồi) đến 1 (độ phù hợp hoàn hảo). Giá trị của GFI càng cao mô hình càng phù hợp, các nhà nghiên cứu (Browne và Cudek, 1992) đề nghị rằng GFI lớn hơn 0,9 thì mô hình được xem là có thể chấp nhận.
- Chỉ số RMSEA (Root Mean Square Error of Approximation): Chỉ số này dùng để khắc phục cho khuynh hướng bác bỏ mô hình của thống kê Chi – bình phương do kích cỡ mẫu lớn. RMSEA cũng là một chỉ số đo lường độ phù hợp tuyệt đối, giá trị của RMSEA càng nhỏ thể hiện độ phù hợp của mô hình càng cao, thông thường RMSEA rơi vào khoảng 0,05 đến 0,08 thì mô hình dường như có thể chấp nhận được.
- Chỉ số CFI (Comparative Fit Index): Là chỉ số đo lường độ phù hợp tăng thêm của mô hình, nó cho biết một so sánh giữa mô hình đề xuất với một mô hình “null” (có bậc tự do bằng 0) hay một mô hình độc lập (có bậc tự do lớn nhất). Giá trị CFI nằm trong khoảng từ 0 đến 1. Giá trị của CFI càng cao thì mô hình càng phù hợp. Tương tự GFI, Browne và Cudek (1992) đề nghị CFI lớn hơn 0,9 thì mô hình được xem là có thể chấp nhận.