Bên cạnh những kết quả đã đạt được trong luận án, một số vấn đề khác còn tồn tại cần được tiếp tục nghiên cứu, đó là:
• Xây dựng thuật toán chiếu kết hợp với kỹ thuật siêu phẳng cắt cho bài toán VIEP(C, f, G).
• Xây dựng thuật toán lai ghép giữa thuật toán đạo hàm tăng cường và phương pháp siêu phẳng cắt cho lớp bài toán BEP(C, f, g).
• Nghiên cứu phương pháp hàm đánh giá giải bài toán EP(C, f) không trơn và áp dụng vào bài toán BEP(C, f, g) không trơn.
DANH MỤC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN
1. On penalty and gap function methods for bilevel equilibrium problems,
J. Appl. Math., DOI:10.1155/2011/646452.
2. A projection algorithm for solving pseudomonotone equilibrium prob- lems and it’s application to a class of bilevel equilibria, Optimization,
DOI:10.1080/02331934.2013.773329.
3. An algorithm for variational inequalities with pseudomonotone equilib- rium constraints. submitted.
Tài liệu tham khảo
Tiếng Việt
[1] Phạm Kỳ Anh và Nguyễn Bường (2005), Bài toán đặt không chỉnh, Nxb Đại học Quốc gia Hà Nội, Hà Nội.
[2] Đỗ Văn Lưu và Phan Huy Khải (2000), Giải tích lồi. Nxb Khoa học và Kỹ thuật, Hà Nội.
[3] Lê Dũng Mưu (1998), Nhập môn các phương pháp tối ưu, Nxb Khoa học và Kỹ thuật, Hà Nội.
Tiếng Anh
[4] L. Q. Anh and P. Q. Khanh (2008), Semicontinuity of the approximate so- lution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29, pp. 24-42.
[5] P. N. Anh, J. Kim, and L. D. Muu (2012), An extragradient algorithm for solving bilevel variational inequalities, J. Glob. Optim., 52, pp. 527-539. [6] J. B. Aubin and I. Ekeland (1984),Applied Nonlinear Analysis. John Wiley
and Sons.
[7] G. Auchumuty (1989), Variational principles for variational inequalities,
Numer. Funct. Anal. Optim., 10, pp. 863-874.
[9] T. Q. Bao and P. Q. Khanh (2005), A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities, in: A. Eberhard, N. Hadjisavvas, and D. T. Luc, Generalized Convexity and Generalized Monotonicity and Applications., Springer.
[10] H. H. Bauschke and P. L. Combettes (2010),Convex Analysis and Mono- tone Operator Theory in Hilbert Spaces. Springer.
[11] C. Berge (1968), Topological Spaces. MacMillan, New York.
[12] D. P. Bertsekas (1999), Nonlinear Programming, Second Edition. Athena Scientific.
[13] M. Bianchi and S. Schaible (1996), Generalized monotone bifuntions and equilibrium problems, J. Optim. Theory Appl., 90, pp. 31-43.
[14] G. Bigi, M. Castellani, and M. Pappalardo (2009), A new solution method for equilibrium problems, Optim. Methods Softw., 24, pp. 895-911.
[15] G. Bigi, M. Castellani, M. Pappalardo, and Passacantando (2013), Ex- istence and solution methods for equilibria, Eur. J. Oper. Res., 227, pp. 1-11.
[16] E. Blum and W. Oettli (1994), From optimization and variational inequal- ities to equilibrium problems, Math. Stud., 62, pp. 127-169.
[17] S. Boyd and L. Vandenberghe (2004), Convex Optimization, Cambridge University Press.
[18] N. Buong and L. T. Duong (2011), An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 151, pp. 513-524.
[19] M. Castellani and M. Pappalardo (2009), Gap functions for nonsmooth equilibrium problems, Taiwanese J. Math., 13, pp. 1837-1846.
[20] M. Castellani and M. Giuli (2010), On equivalent equilibrium problems,
J. Optim. Theory Appl., 147, pp. 157-168.
[21] Y. Censor and A. Lent (1981), An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34, pp. 321-353.
[22] G. Cohen (1998), Auxiliary problem principle extended to variational in- equalities, J. Optim.Theory Appl., 59, pp. 325-333.
[23] J. Contreras, M. Klusch, and J. B. Krawczyk (2004), Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets, IEEE Trans. Power Syst., 19, pp. 195-206.
[24] S. Dempe (2002), Foundations of Bilevel Programming, Kluwer Academic Press, Dordrecht.
[25] B. V. Dinh, P. G. Hung, and L. D. Muu, Bilevel optimization as a regular- ization approach to pseudomonotone equilibrium problems,Numer. Funct. Anal. Appl., DOI: 10.1080/01630563.2013.813857.
[26] X. P. Ding (2010), Auxiliary principle and algorithm for mixed equilibrium problems and bilevel equilibrium problems in Banach spaces, J. Optim. Theory Appl., 146, pp. 347-357.
[27] T. T. T. Duong and N. X. Tan (2012), On the existence of solutions to generalized quasi-equilibrium problems, J. Glob. Optim., 4, pp. 711-728. [28] F. Facchinei and J. S. Pang (2003), Finite-Dimensional Variational In-
equalities and Complementarity Problems, Springer, New York.
[29] K. Fan (1972), A minimax inequality and applications, in: O. Shisha, In- equality III, Proceeding of the Third Symposium on Inequalities, Academic Press, New York.
[30] M. Fukushima (1992), Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,Math. Program., 53, pp. 99-110.
[31] N. T. Hao (2006), Tikhonov regularization algorithm for pseudomonotone variational inequalites, Acta Math. Vietnam., 31, pp. 283-289.
[32] P. G. Hung and L. D. Muu (2011), The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions, Nonlinear Anal., Theory Methods Appl., Ser. A, 74, pp. 6121-6129.
[33] A. N. Iusem and W. Sosa (2003), Iterative algorithms for equilibrium problems, Optimization, 52, pp. 301-316.
[34] V. V. Kalashnikov and N. I. Klashnikova (1996), Solving two-level varia- tional inequality, J. Glob. Optim., 8, pp. 289-294.
[35] V. G. Karmanov (1989), Mathematical Programming. Mir Publishers, Moscow.
[36] I. V. Konnov (2001), Combined Relaxation Methods for Variational In- equalities. Springer.
[37] G. M. Korpelevich (1976), The extragradient method for finding saddle points and other problems, Ekon. Math. Methody, 12, pp. 747-756.
[38] P. E. Maing´e (2008), Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16, pp. 899-912.
[39] P. E. Maing´e (2008), A hybrid extragradient viscosity methods for mono- tone operators and fixed point problems, SIAM J. Control. Optim., 47, pp. 1499-1515
[40] B. Martinet (1970), Regularisation d’inequations variationelles par ap- proximations successives, RAIRO, 4, pp. 154-159.
[41] G. Mastroeni (2003), On auxiliary principle for equilibrium problems, in: P. Daniele, F. Giannessi, and A.Maugeri, (eds.), Equilibrium Problems and Variational Models, Kluwer Academic Publishers, Dordrecht.
[42] G. Mastroeni (2003), Gap functions for equilibrium problems, J. Glob. Optim., 27, pp. 411-426.
[43] M. A. Migdalas, P. Pardalos, and P. Varbrand (eds) (1988), Multilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers Dordrecht.
[44] A. Moudafi (1999), Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15, pp. 91-100.
[45] A. Moudafi (2010), Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim., 47, pp. 287-292.
[46] L. D. Muu and T. D. Quoc (2009), Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilib- rium model, J. Optim. Theory Appl., 142, pp. 185-204.
[47] L. D. Muu, V. H. Nguyen, and T. D. Quoc (2008), Extragradient algo- rithms extended to equilibrium problems, Optimization, 57, pp. 749-776. [48] L. D. Muu, N. V. Quy, and V. H. Nguyen (2007), On Nash-Cournot
oligopolistic market equilibrium models with concave cost functions, J. Glob. Optim., 41, pp. 351-364.
[49] L. D. Muu and W. Oettli (1992), Convergence of an adaptive penalty scheme for finding constrained equilibria,Nonlinear Anal., Theory Methods Appl., Ser. A, 18, pp. 1159-1166.
[50] L. D. Muu (1986), An augmented penalty function method for solving a class of variational inequalities, USSR Comput. Math. Math. Phys., 12, pp. 1788-1796.
[51] L. D. Muu (1984), Stability property of a class of variational inequality,
Optimization, 15, pp. 347-351.
[52] J. F. Nash (1951), Non-cooperative games, Ann. Math., 54, pp. 286-295. [53] H. Nikaido and K. Isoda (1955), Note on noncooperative convex games,
Pac. J. Math., 5, pp. 807-815.
[54] M. A. Noor (2004), Auxiliary principle technique for equilibrium prob- lems, J. Optim. Theory Appl., 122, pp. 371-386.
[55] T. D. Quoc and L. D. Muu (2012), Iterative methods for solving monotone equilibrium problems via dual gap functions, Comput. Optim. Appl., 51, pp. 709-728.
[56] T. D. Quoc, P. N. Anh, and L. D. Muu (2012), Dual extragradient algo- rithms extended to equilibrium problems, J. Glob. Optim.,52, pp. 139-159. [57] R. T. Rockafellar (1997), Convex Analysis, Princeton Universty Press.
Princeton, New Jersey.
[58] R. T. Rockafellar (1976), Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 5, pp. 877-898.
[59] M. V. Solodov and B. F. Svaiter (1999), A hybrid projection-proximal point algorithm, J. Convex Anal., 6, pp. 59-70.
[60] M. V. Solodov and B. F. Svaiter (1999), A new projection method for variational inequality problems,SIAM J. Control. Optim.,37, pp. 765-776.
[61] A. Tada and W. Takahashi (2007), Weak and strong convergence theo- rem for nonexpansive mapping and equilibrium problem,J. Optim. Theory Appl., 133, pp. 359-370.
[62] N. N. Tam, J. C. Yao, and N. D. Yen (2008), Solution methods for pseu- domonotone variational inequalities, J. Optim.Theory Appl., 138, pp. 253- 273.
[63] A. N. Tikhonov and V. Y. Arsenin (1977),Solutions of Ill-Posed Problems, John Wiley and Sons, New York.
[64] A. N. Tikhonov (1963), On the solutions of ill-posed problems and the method of regularization. Dokl. Akad. Nauk SSSR, 151, pp. 501-504. [65] L. A. Tuan, P. H. Sach, and N. B. Minh (2013), Existence results in a
general equilibrium problem, Numer. Funct. Anal. Optim., 34, pp. 430- 450.
[66] H. Tuy (1988), Convex Analysis and Global Optimization. Kluwer Aca- demic Publisher.
[67] Y. Yao, J. C. Liou, and S. M. Kang (2010), Minimization of equilib- rium problems, variational inequality problems and fixed point problems,
J. Glob. Optim., 48, pp. 643-655.
[68] N. T. T. Van, J. J. Strodiot, and V. H. Nguyen (2009), A bundle method for solving equilibrium problems, Math. Program., 116, 529-552.